Login

Latest results

Search for very-high-energy gamma-ray emission from the microquasar Cygnus X-1 with the MAGIC telescopes
The microquasar Cygnus X-1 displays the two typical soft and hard X-ray states of a black-hole transient. During the latter, Cygnus X-1 shows a one-sided relativistic radio-jet. Recent detection of the system in the high energy (HE; E> 60 MeV) gamma- ray range with Fermi-LAT associates this emission with the outflow. Former MAGIC observations revealed a hint of flaring activity in the very high-energy (VHE; E > 100 GeV) regime during this X-ray state. We analyze ∼ 97 hr of Cygnus X-1 data taken with the MAGIC telescopes between July 2007 and October 2014. To shed light on the correlation between hard X-ray and VHE gamma rays as previously suggested, we study each main X-ray state separately. We perform an orbital phase-folded analysis to look for variability in the VHE band. Additionally, to place this variability behavior in a multiwavelength context, we compare our results with Fermi-LAT, AGILE, Swift-BAT, MAXI, RXTE-ASM, AMI and RATAN-600 data. We do not detect Cygnus X-1 in the VHE regime. We establish upper limits for each X-ray state, assuming a power-law distribution with photon index Γ=3.2. For steady emission in the hard and soft X-ray states, we set integral upper limits at 95% confidence level for energies above 200 GeV at 2.6×10^−12 photonscm^−2s^−1 and 1.0×10^−11 photonscm^−2s^−1, respectively. We rule out steady VHE gamma-ray emission above this energy range, at the level of the MAGIC sensitivity, originating in the interaction between the relativistic jet and the surrounding medium, while the emission above this flux level produced inside the binary still remains a valid possibility.

External link:
https://arxiv.org/abs/1708.03689

Performance of the MAGIC telescopes under moonlight
MAGIC, a system of two imaging atmospheric Cherenkov telescopes, achieves its best performance under dark conditions, i.e. in absence of moonlight or twilight. Since operating the telescopes only during dark time would severely limit the duty cycle, observations are also performed when the Moon is present in the sky. Here we develop a dedicated Moon-adapted analysis to characterize the performance of MAGIC under moonlight. We evaluate energy threshold, angular resolution and sensitivity of MAGIC under different background light levels, based on Crab Nebula observations and tuned Monte Carlo simulations. This study includes observations taken under non-standard hardware configurations, such as reducing the camera photomultiplier tubes gain by a factor ~1.7 (Reduced HV settings) with respect to standard settings (Nominal HV) or using UV-pass filters to strongly reduce the amount of moonlight reaching the cameras of the telescopes. The Crab Nebula spectrum is correctly reconstructed in all the studied illumination levels, that reach up to 30 times brighter than under dark conditions. The main effect of moonlight is an increase in the analysis energy threshold and in the systematic uncertainties on the flux normalization. The sensitivity degradation is constrained to be below 10%, within 15-30% and between 60 and 80% for Nominal HV, Reduced HV and UV-pass filter observations, respectively. No worsening of the angular resolution was found. Thanks to observations during moonlight, the maximal duty cycle of MAGIC can be increased from ~18%, under dark nights only, to up to ~40% in total with only moderate performance degradation.

External link:
https://arxiv.org/abs/1704.00906v4

A cut-off in the TeV gamma-ray spectrum of the SNR Cassiopeia A
It is widely believed that the bulk of the Galactic cosmic rays are accelerated in supernova remnants (SNRs). However, no observational evidence of the presence of particles of PeV energies in SNRs has yet been found. The young historical SNR Cassiopeia A (Cas A) appears as one of the best candidates to study acceleration processes. Between December 2014 and October 2016 we observed Cas A with the MAGIC telescopes, accumulating 158 hours of good-quality data. We derived the spectrum of the source from 100 GeV to 10 TeV. We also analysed $\sim$8 years of $Fermi$-LAT to obtain the spectral shape between 60 MeV and 500 GeV. The spectra measured by the LAT and MAGIC telescopes are compatible within the errors and show a clear turn off (4.6 $\sigma$) at the highest energies, which can be described with an exponential cut-off at $E_c = 3.5\left(^{+1.6}_{-1.0}\right)_{\textit{stat}} \left(^{+0.8}_{-0.9}\right)_{\textit{sys}}$ TeV. The gamma-ray emission from 60 MeV to 10 TeV can be attributed to a population of high-energy protons with spectral index $\sim$2.2 and energy cut-off at $\sim$10 TeV. This result indicates that Cas A is not contributing to the high energy ($\sim$PeV) cosmic-ray sea in a significant manner at the present moment. A one-zone leptonic model fails to reproduce by itself the multi-wavelength spectral energy distribution. Besides, if a non-negligible fraction of the flux seen by MAGIC is produced by leptons, the radiation should be emitted in a region with a low magnetic field (B$\lessapprox$100$\mu$G) like in the reverse shock.)

External link:
http://arxiv.org/abs/1707.01583v1

Observation of the black widow B1957+20 millisecond pulsar binary system with the MAGIC telescopes
B1957+20 is a millisecond pulsar located in a black-widow-type compact binary system with a low-mass stellar companion. The interaction of the pulsar wind with the companion star wind and/or the interstellar plasma is expected to create plausible conditions for acceleration of electrons to TeV energies and subsequent production of very high-energy γ-rays in the inverse Compton process. We performed extensive observations with the Major Atmospheric Gamma Imaging Cherenkov Telescopes (MAGIC) telescopes of B1957+20. We interpret results in the framework of a few different models, namely emission from the vicinity of the millisecond pulsar, the interaction of the pulsar and stellar companion wind region or bow shock nebula. No significant steady very high-energy γ-ray emission was found. We derived a 95 per cent confidence level upper limit of 3.0 × 10-12 cm-2 s-1 on the average γ-ray emission from the binary system above 200 GeV. The upper limits obtained with the MAGIC constrain, for the first time, different models of the high-energy emission in B1957+20. In particular, in the inner mixed wind nebula model with mono-energetic injection of electrons, the acceleration efficiency of electrons is constrained to be below ̃2-10 per cent of the pulsar spin-down power. For the pulsar emission, the obtained upper limits for each emission peak are well above the exponential cut-off fits to the Fermi-LAT data, extrapolated to energies above 50 GeV. The MAGIC upper limits can rule out a simple power-law tail extension through the sub-TeV energy range for the main peak seen at radio frequencies.

External link:
https://academic.oup.com/mnras/article-abstract/470/4/4608/3865147/Observation-of-the-black-widow-B1957-20?redirectedFrom=fulltext

MAGIC observations of the microquasar V404 Cygni during the 2015 outburst
The microquasar V404 Cygni underwent a series of outbursts in 2015, June 15-31, during which its flux in hard X-rays (20-40 keV) reached about 40 times the Crab Nebula flux. Because of the exceptional interest of the flaring activity from this source, observations at several wavelengths were conducted. The MAGIC telescopes, triggered by the INTEGRAL alerts, followed-up the flaring source for several nights during the period June 18-27, for more than 10 hours. One hour of observation was conducted simultaneously to a giant 22 GHz radio flare and a hint of signal at GeV energies seen by {\it Fermi}-LAT. The MAGIC observations did not show significant emission in any of the analysed time intervals. The derived flux upper limit, in the energy range 200--1250 GeV, is 4.8$\times 10^{-12}$ ph cm$^{-2}$ s$^{-1}$. We estimate the gamma-ray opacity during the flaring period, which along with our non-detection, points to an inefficient acceleration in the V404\,Cyg jets if VHE emitter is located further than $1\times 10^{10}$ cm from the compact object.

External link:
https://arxiv.org/abs/1707.00887