Login

MAGIC results

Constraining very-high-energy and optical emission from FRB 121102 with the MAGIC telescopes
Fast radio bursts (FRBs) are bright flashes observed typically at GHz frequencies with millisecond duration, whose origin is likely extragalactic. Their nature remains mysterious, motivating searches for counterparts at other wavelengths. FRB 121102 is so far the only source known to repeatedly emit FRBs and is associated with a host galaxy at redshift z≃0.193. We conducted simultaneous observations of FRB 121102 with the Arecibo and MAGIC telescopes during several epochs in 2016--2017. This allowed searches for millisecond-timescale burst emission in very-high-energy (VHE) gamma rays as well as the optical band. While a total of five FRBs were detected during these observations, no VHE emission was detected, neither of a persistent nature nor burst-like associated with the FRBs. The average integral flux upper limits above 100 GeV at 95% confidence level are 6.6×10−12 photons cm−2 s−1 (corresponding to luminosity LVHE≲1045 erg s−1) over the entire observation period, and 1.2×10−7 photons cm−2 s−1 (LVHE≲1049 erg s−1) over the total duration of the five FRBs. We constrain the optical U-band flux to be below 8.6 mJy at 5-σ level for 1-ms intervals around the FRB arrival times. A bright burst with U-band flux 29 mJy and duration ∼12 ms was detected 4.3 s before the arrival of one FRB. However, the probability of spuriously detecting such a signal within the sampled time space is 1.5% (2.2 σ, post-trial), i.e. consistent with the expected background. We discuss the implications of the obtained upper limits for constraining FRB models.

External link:
https://arxiv.org/abs/1809.00663

Detection of persistent VHE gamma-ray emission from PKS 1510-089 by the MAGIC telescopes during low states between 2012 and 2017
Context. PKS 1510-089 is a flat spectrum radio quasar strongly variable in the optical and GeV range. So far, very-high-energy (VHE) emission has been observed from this source during either long high states of optical and GeV activity or during short flares. Aims. We search for low-state VHE gamma-ray emission from PKS 1510-089. We aim to characterize and model the source in a broad-band context, which would provide a baseline over which high states and flares could be better understood. Methods. PKS 1510-089 has been monitored by the MAGIC telescopes since 2012. We use daily binned Fermi-LAT flux measurements of PKS 1510-089 to characterize the GeV emission and select the observation periods of MAGIC during low state of activity. For the selected times we compute the average radio, IR, optical, UV, X-ray and gamma-ray emission to construct a low-state spectral energy distribution of the source. The broadband emission is modelled within an External Compton scenario with a stationary emission region through which plasma and magnetic field are flowing. Results. The MAGIC telescopes collected 75 hrs of data during times when the Fermi-LAT flux measured above 1 GeV was below 3x10 -8 cm -2 s -1 , which is the threshold adopted for the definition of a low gamma-ray activity state. The data show a strongly significant (9.5{\sigma}) VHE gamma-ray emission at the level of (4.27 +- 0.61 stat ) x 10 -12 cm -2 s -1 above 150 GeV, a factor 80 smaller than the highest flare observed so far from this object. Despite the lower flux, the spectral shape is consistent with earlier detections in the VHE band. The broad-band emission is compatible with the External Compton scenario assuming a large emission region located beyond the broad line region.

External link:
https://arxiv.org/abs/1806.05367

The extreme HBL behaviour of Markarian 501 during 2012
Aims: We aim to characterize the multiwavelength emission from Markarian 501 (Mrk 501), quantify the energy-dependent variability, study the potential multiband correlations and describe the temporal evolution of the broadband emission within leptonic theoretical scenarios. Methods: A multiwavelength campaign was organized to take place between March and July of 2012. Excellent temporal coverage was obtained with more than 25 instruments, including the MAGIC, FACT and VERITAS Cherenkov telescopes, the instruments on board the Swift and Fermi spacecraft, and the telescopes operated by the GASP-WEBT collaboration. Results: Mrk 501 showed a very high energy (VHE) gamma-ray flux above 0.2 TeV of ∼0.5 times the Crab Nebula flux (CU) for most of the campaign. The highest activity occurred on 2012 June 9, when the VHE flux was ∼3 CU, and the peak of the high-energy spectral component was found to be at ∼2 TeV. Both the X-ray and VHE gamma-ray spectral slopes were measured to be extremely hard, with spectral indices < 2 during most of the observing campaign, regardless of the X-ray and VHE flux. This study reports the hardest Mrk 501 VHE spectra mea sured to date. The fractional variability was found to increase with energy, with the highest variability occurring at VHE. Using the complete data set, we found correlation between the X-ray and VHE bands; however, if the June 9 flare is excluded, the correlation disappears (significance <3σ) despite the existence of substantial variability in the X-ray and VHE bands throughout the campaign. Conclusions: The unprecedentedly hard X-ray and VHE spectra measured imply that their low- and high-energy components peaked above 5 keV and 0.5 TeV, respectively, during a large fraction of the observing campaign, and hence that Mrk 501 behaved like an extreme high-frequency-peaked blazar (EHBL) throughout the 2012 observing season. This suggests that being an EHBL may not be a permanent characteristic of a blazar, but rather a state which may change over time. The data set acquired shows that the broadband spectral energy distribution (SED) of Mrk 501, and its transient evolution, is very complex, requiring, within the framework of synchrotron self-Compton (SSC) models, various emission regions for a satisfactory description. Nevertheless the one-zone SSC scenario can successfully describe the segments of the SED where most energy is emitted, with a significant correlation between the electron energy density and the VHE gamma-ray activity, suggesting that most of the variability may be explained by the injection of high-energy electrons. The one-zone SSC scenario used reproduces the behaviour seen between the measured X-ray and VHE gamma-ray fluxes, and predicts that the correlation becomes stronger with increasing energy of the X-rays.

External link:
https://arxiv.org/abs/1808.04300

The blazar TXS 0506+056 associated with a high-energy neutrino: insights into extragalactic jets and cosmic ray acceleration
A neutrino with energy of ∼290 TeV, IceCube-170922A, was detected in coincidence with the BL Lac object TXS~0506+056 during enhanced gamma-ray activity, with chance coincidence being rejected at ∼3σ level. We monitored the object in the very-high-energy (VHE) band with the MAGIC telescopes for ∼41 hours from 1.3 to 40.4 days after the neutrino detection. Day-timescale variability is clearly resolved. We interpret the quasi-simultaneous neutrino and broadband electromagnetic observations with a novel one-zone lepto-hadronic model, based on interactions of electrons and protons co-accelerated in the jet with external photons originating from a slow-moving plasma sheath surrounding the faster jet spine. We can reproduce the multiwavelength spectra of TXS 0506+056 with neutrino rate and energy compatible with IceCube-170922A, and with plausible values for the jet power of ∼1045−4×1046erg s−1. The steep spectrum observed by MAGIC is concordant with internal γγ absorption above a few tens of GeV entailed by photohadronic production of a ∼290 TeV neutrino, corroborating a genuine connection between the multi-messenger signals. In contrast to previous predictions of predominantly hadronic emission from neutrino sources, the gamma-rays can be mostly ascribed to inverse Compton up-scattering of external photons by accelerated electrons. The X-ray and VHE bands provide crucial constraints on the emission from both accelerated electrons and protons. We infer that the maximum energy of protons in the jet co-moving frame can be in the range ∼1014 to 1018 eV.

External link:
https://arxiv.org/abs/1807.04300

The broad-band properties of the intermediate synchrotron peaked BL Lac S2 0109+22 from radio to VHE gamma rays
The MAGIC telescopes observed S2 0109+22 in 2015 July during its flaring activity in high energy gamma rays observed by Fermi-LAT. We analyse the MAGIC data to characterise the very high energy (VHE) gamma-ray emission of S2 0109+22, which belongs to the subclass of intermediate synchrotron peak (ISP) BL Lac objects. We study the multi-frequency emission in order to investigate the source classification. Finally, we compare the source long-term behaviour to other VHE gamma-ray emitting (TeV) blazars. We performed a temporal and spectral analysis of the data centred around the MAGIC interval of observation (MJD 57225-57231). Long-term radio and optical data have also been investigated using the discrete correlation function. The redshift of the source is estimated through optical host-galaxy imaging and also using the amount of VHE gamma-ray absorption. The quasi-simultaneous multi-frequency spectral energy distribution (SED) is modelled with the conventional one-zone synchrotron self-Compton (SSC) model. MAGIC observations resulted in the detection of the source at a significance level of 5.3 σ. The VHE gamma-ray emission of S2 0109+22 is variable on a daily time scale. VHE gamma-ray luminosity of the source is lower than the average of TeV BL Lacs. The optical polarization, and long-term optical/radio behaviour of the source are different from the general population of TeV blazars. All these findings agree with the classification of the source as an ISP BL Lac object. We estimate the source redshift as z = 0.36 ± 0.07. The SSC parameters describing the SED are rather typical for blazars.

External link:
https://arxiv.org/abs/1807.02095v1

Multi-wavelength characterization of the blazar S5 0716+714 during an unprecedented outburst phase
Context. The BL Lac object S5 0716+714, a highly variable blazar, underwent an impressive outburst in January 2015 (Phase A), followed by minor activity in February (Phase B). The MAGIC observations were triggered by the optical flux observed in Phase A, corresponding to the brightest ever reported state of the source in the R-band. Aims. The comprehensive dataset collected is investigated in order to shed light on the mechanism of the broadband emission. Methods. Multi-wavelength light curves have been studied together with the broadband Spectral Energy Distributions (SEDs). The data set collected spans from radio (Effelsberg, OVRO, Metsahovi, VLBI, CARMA, IRAM, SMA), UV (Swift-UVOT), optical photometry and polarimetry (Tuorla, Steward, RINGO3, KANATA, AZT-8+ST7, Perkins, LX-200), X-ray (Swift-XRT andNuSTAR), high-energy (HE, 0.1 GeV < E < 100 GeV) with Fermi-LAT to the very-high-energy (VHE, E¿100 GeV) with MAGIC. Results. The flaring state of Phase A was detected in all the energy bands, providing for the first time a multi-wavelength sample of simultaneous data from the radio band to the VHE. In the constructed SED the Swift-XRT+NuSTAR data constrain the transition between the synchrotron and inverse Compton components very accurately, while the second peak is constrained from 0.1 GeV to 600 GeV by Fermi+MAGIC data. The broadband SED cannot be described with a one-zone synchrotron self-Compton model as it severely underestimates the optical flux in order to reproduce the X-ray to γ-ray data. Instead we use a two-zone model. The electric vector position angle (EVPA) shows an unprecedented fast rotation. An estimation of the redshift of the source by combined HE and VHE data provides a value of z=0.31±0.02stats±0.05sys, confirming the literature value. Conclusions. The data show the VHE emission originating in the entrance and exit of a superluminal knot in and out a recollimation shock in the inner jet. A shock-shock interaction in the jet seems responsible for the observed flares and EVPA swing. This scenario is also consistent with the SED modelling.

External link:
https://arxiv.org/pdf/1807.00413.pdf

Gamma-ray flaring activity of NGC 1275 in 2016-2017 measured by MAGIC
We report on the detection of flaring activity from the Fanaroff-Riley I radio galaxy NGC 1275 in very-high-energy (VHE, E > 100 GeV) gamma rays with the MAGIC telescopes. Observations were performed between 2016 September and 2017 February as part of a monitoring program. The brightest outburst with ∼1.5 times the Crab Nebula flux above 100 GeV (C.U.) was observed during the night between 2016 December 31 and 2017 January 1 (fifty times higher than the mean previously measured in two observational campaigns between 2009 and 2011). Significant variability of the day-by-day light curve was measured, the shortest flux-doubling time-scales was found to be of (611±101) min. The combined spectrum of the MAGIC data during the strongest flare state and simultaneous data from the Fermi-LAT around 2017 January 1 follows a power-law with an exponential cutoff at the energy (492±35) GeV. Simultaneous optical flux density measurements in the R-band obtained with the KVA telescope are also presented and the correlation between the optical and gamma-ray emission is investigated. Due to possible internal pair-production, the fast flux variability constrains the Doppler factor to values which are inconsistent with a large viewing angle as observed in the radio band. We investigate different scenarios for the explanation of fast gamma-ray variability, namely emission from: magnetospheric gaps, relativistic blobs propagating in the jet (mini-jets) or external cloud (or star) entering the jet. We find that the only plausible model to account for the luminosities here observed would be the production of gamma rays in a magnetospheric gap around the central black hole only in the eventuality of an enhancement of the magnetic field threading the hole from its equipartition value with the gas pressure in the accretion flow.

External link:
https://arxiv.org/abs/1806.01559

Indirect dark matter searches in the dwarf satellite galaxy Ursa Major II with the MAGIC Telescopes
The dwarf spheroidal galaxy Ursa Major II (UMaII) is believed to be one of the most dark-matter dominated systems among the Milky Way satellites and represents a suitable target for indirect dark matter (DM) searches. The MAGIC telescopes carried out a deep observation campaign on UMaII between 2014 and 2016, collecting almost one hundred hours of good-quality data. This campaign enlarges the pool of DM targets observed at very high energy (E≳50GeV) in search for signatures of dark matter annihilation in the wide mass range between ∼100 GeV and ∼100 TeV. To this end, the data are analyzed with the full likelihood analysis, a method based on the exploitation of the spectral information of the recorded events for an optimal sensitivity to the explored dark matter models. We obtain constraints on the annihilation cross-section for different channels that are among the most robust and stringent achieved so far at the TeV mass scale from observations of dwarf satellite galaxies.

External link:
https://arxiv.org/abs/1712.03095v2

The detection of the blazar S4 0954+65 at very-high-energy with the MAGIC telescopes during an exceptionally high optical state
The very-high-energy (VHE, $\gtrsim 100$ GeV) $\gamma$-ray MAGIC observations of the blazar S4 0954+65, were triggered by an exceptionally high flux state of emission in the optical. This blazar has a disputed redshift of z=0.368 or z$\geqslant$0.45 and an uncertain classification among blazar subclasses. The exceptional source state described here makes for an excellent opportunity to understand physical processes in the jet of S4 0954+65 and thus contribute to its classification. We investigate the multiwavelength (MWL) light curve and spectral energy distribution (SED) of the S4 0954+65 blazar during an enhanced state in February 2015 and put it in context with possible emission scenarios. We collect photometric data in radio, optical, X-ray, and $\gamma$ ray. We study both the optical polarization and the inner parsec-scale jet behavior with 43 GHz data. Observations with the MAGIC telescopes led to the first detection of S4 0954+65 at VHE. Simultaneous data with Fermi-LAT at high energy $\gamma$ ray\ (HE, 100 MeV < E < 100 GeV) also show a period of increased activity. Imaging at 43 GHz reveals the emergence of a new feature in the radio jet in coincidence with the VHE flare. Simultaneous monitoring of the optical polarization angle reveals a rotation of approximately 100$^\circ$. (...) The broadband spectrum can be modeled with an emission mechanism commonly invoked for flat spectrum radio quasars, i.e. inverse Compton scattering on an external soft photon field from the dust torus, also known as external Compton. The light curve and SED phenomenology is consistent with an interpretation of a blob propagating through a helical structured magnetic field and eventually crossing a standing shock in the jet, a scenario typically applied to flat spectrum radio quasars (FSRQs) and low-frequency peaked BL Lac objects (LBL).

External link:
https://arxiv.org/abs/1801.04138

Constraining Lorentz Invariance Violation Using the Crab Pulsar Emission Observed up to TeV Energies by MAGIC
Spontaneous breaking of Lorentz symmetry at energies on the order of the Planck energy or lower is predicted by many quantum gravity theories, implying non-trivial dispersion relations for the photon in vacuum. Consequently, gamma-rays of different energies, emitted simultaneously from astrophysical sources, could accumulate measurable differences in their time of flight until they reach the Earth. Such tests have been carried out in the past using fast variations of gamma-ray flux from pulsars, and more recently from active galactic nuclei and gamma-ray bursts. We present new constraints studying the gamma-ray emission of the galactic Crab Pulsar, recently observed up to TeV energies by the Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) collaboration. A profile likelihood analysis of pulsar events reconstructed for energies above 400 GeV finds no significant variation in arrival time as their energy increases. Ninety-five percent CL limits are obtained on the effective Lorentz invariance violating energy scale at the level of E_QG1 > 5.5*10^17 GeV (4.5*10^17 GeV) for a linear, and E_QG2 > 5.9*10^10 GeV (5.3*10^10 GeV) for a quadratic scenario, for the subluminal and the superluminal cases, respectively. A substantial part of this study is dedicated to calibration of the test statistic, with respect to bias and coverage properties. Moreover, the limits take into account systematic uncertainties, which are found to worsen the statistical limits by about 36%–42%. Our constraints would have been much more stringent if the intrinsic pulse shape of the pulsar between 200 GeV and 400 GeV was understood in sufficient detail and allowed inclusion of events well below 400 GeV.

External link:
https://arxiv.org/abs/1709.00346

Page 1 of 7