Login icon


Logout

MAGIC results

Studying the nature of the unidentified gamma-ray source HESS J1841-055 with the MAGIC telescopes
We investigate the physical nature and origin of the gamma-ray emission from the extended source HESS J1841-055 observed at TeV and GeV energies. We observed HESS J1841-055 at TeV energies for a total effective time of 43 hours with the MAGIC telescopes, in 2012 and 2013. Additionally, we analysed the GeV counterpart making use of about 10 years of Fermi-LAT data. Using both Fermi-LAT and MAGIC, we study both the spectral and energy-dependent morphology of the source for almost four decades of energy. The origin of the gamma-ray emission from this region is investigated using multi-waveband information on sources present in this region, suggested to be associated with this unidentified gamma-ray source. We find that the extended emission at GeV-TeV energies is best described by more than one source model. We also perform the first energy-dependent analysis of the HESS J1841-055 region at GeV-TeV. We find that the emission at lower energies comes from a diffuse or extended component, while the major contribution of gamma rays above 1 TeV arises from the southern part of the source. Moreover, we find that a significant curvature is present in the combined observed spectrum of MAGIC and Fermi-LAT. The first multi-wavelength spectral energy distribution of this unidentified source shows that the emission at GeV-TeV energies can be well explained with both leptonic and hadronic models. For the leptonic scenario, bremsstrahlung is the dominant emission compared to inverse Compton. On the other hand, for the hadronic model, gamma-ray resulting from the decay of neutral pions ( π0 ) can explain the observed spectrum. The presence of dense molecular clouds overlapping with HESS J1841-055 makes both bremsstrahlung and π0 -decay processes the dominant emission mechanisms for the source.

External link:
https://arxiv.org/abs/2007.09321

An intermittent extreme BL Lac: MWL study of 1ES 2344+514 in an enhanced state
Extreme high-frequency BL Lacs (EHBL) feature their synchrotron peak of the broad-band spectral energy distribution (SED) at νs ≥ 1017 Hz. The BL Lac object 1ES 2344+514 was included in the EHBL family because of its impressive shift of the synchrotron peak in 1996. During the following years, the source appeared to be in a low state without showing any extreme behaviours. In 2016 August, 1ES 2344+514 was detected with the ground-based γ-ray telescope FACT during a high γ-ray state, triggering multiwavelength (MWL) observations. We studied the MWL light curves of 1ES 2344+514 during the 2016 flaring state, using data from radio to very-high-energy (VHE) γ-rays taken with OVRO, KAIT, KVA, NOT, some telescopes of the GASP-WEBT collaboration at the Teide, Crimean, and St. Petersburg observatories, Swift-UVOT, Swift-XRT, Fermi-LAT, FACT, and MAGIC. With simultaneous observations of the flare, we built the broad-band SED and studied it in the framework of a leptonic and a hadronic model. The VHE γ-ray observations show a flux level of 55 per cent of the Crab Nebula flux above 300 GeV, similar to the historical maximum of 1995. The combination of MAGIC and Fermi-LAT spectra provides an unprecedented characterization of the inverse-Compton peak for this object during a flaring episode. The Γ index of the intrinsic spectrum in the VHE γ-ray band is 2.04 ± 0.12stat ± 0.15sys. We find the source in an extreme state with a shift of the position of the synchrotron peak to frequencies above or equal to 1018 Hz.

External link:
https://ui.adsabs.harvard.edu/abs/2020MNRAS.496.3912M/abstract

Testing two-component models on very-high-energy gamma-ray emitting BL Lac objects
Context. It has become evident that one-zone synchrotron self-Compton (SSC) models are not always adequate for very-high-energy (VHE) gamma-ray emitting blazars. While two-component models are performing better, they are difficult to constrain due to the large number of free parameters. Aims. In this work, we make a first attempt to take into account the observational constraints from Very Long Baseline Interferometry (VLBI) data, long-term light curves (radio, optical, and X-rays) and optical polarisation to limit the parameter space for a two-component model and test if it can still reproduce the observed spectral energy distribution (SED) of the blazars. Methods. We selected five TeV BL Lac objects based on the availability of VHE gamma-ray and optical polarisation data. We collected constraints for the jet parameters from VLBI observations. We evaluated the contributions of the two components to the optical flux by means of decomposition of long-term radio and optical light curves as well as modelling of the optical polarisation variability of the objects. We selected eight epochs for these five objects, based on the variability observed at VHE gamma rays, for which we constructed the SEDs that we then modelled with a two-component model. Results. We found parameter sets which can reproduce the broadband SED of the sources in the framework of two-component models considering all available observational constraints from VLBI observations. Moreover, the constraints obtained from the long-term behaviour of the sources in the lower energy bands could be used to determine the region where the emission in each band originates. Finally, we attempted to use optical polarisation data to shed new light on the behaviour of the two components in the optical band. Our observationally constrained two zone model allows explanation of the entire SED from radio to VHE with two co-located emission regions.

External link:
https://arxiv.org/abs/2006.04493

Bounds on Lorentz invariance violation from MAGIC observation of GRB 190114C
On January 14, 2019, the Major Atmospheric Gamma Imaging Cherenkov telescopes detectedGRB 190114C above 0.2 TeV, recording the most energetic photons ever observed from a gamma-ray burst. We use this unique observation to probe an energy dependence of the speed of light invacuo for photons as predicted by several quantum gravity models. Based on a set of assumptionson the possible intrinsic spectral and temporal evolution,we obtain competitive lower limits on thequadratic leading order of speed of light modification.

External link:
https://ui.adsabs.harvard.edu/abs/2020arXiv200600623M/abstract

The Great Markarian 421 Flare of 2010 February: Multiwavelength Variability and Correlation Studies
We report on variability and correlation studies using multiwavelength observations of the blazar Mrk 421 during the month of 2010 February, when an extraordinary flare reaching a level of ∼27 Crab Units above 1 TeV was measured in very high energy (VHE) γ-rays with the Very Energetic Radiation Imaging Telescope Array System (VERITAS) observatory. This is the highest flux state for Mrk 421 ever observed in VHE γ-rays. Data are analyzed from a coordinated campaign across multiple instruments, including VHE γ-ray (VERITAS, Major Atmospheric Gamma-ray Imaging Cherenkov), high-energy γ-ray (Fermi-LAT), X-ray (Swift, Rossi X-ray Timing Experiment, MAXI), optical (including the GASP-WEBT collaboration and polarization data), and radio (Metsähovi, Owens Valley Radio Observatory, University of Michigan Radio Astronomy Observatory). Light curves are produced spanning multiple days before and after the peak of the VHE flare, including over several flare "decline" epochs. The main flare statistics allow 2 minute time bins to be constructed in both the VHE and optical bands enabling a cross-correlation analysis that shows evidence for an optical lag of ∼25─55 minutes, the first time-lagged correlation between these bands reported on such short timescales. Limits on the Doppler factor (δ ≳ 33) and the size of the emission region ( δ−1RB≲3.8×1013cm ) are obtained from the fast variability observed by VERITAS during the main flare. Analysis of 10 minute binned VHE and X-ray data over the decline epochs shows an extraordinary range of behavior in the flux─flux relationship, from linear to quadratic to lack of correlation to anticorrelation. Taken together, these detailed observations of an unprecedented flare seen in Mrk 421 are difficult to explain with the classic single-zone synchrotron self-Compton model.

External link:
https://ui.adsabs.harvard.edu/abs/2020ApJ...890...97A/abstract

A search for dark matter in Triangulum II with the MAGIC telescopes
We present the first results from very-high-energy observations of the dwarf spheroidal satellite candidate Triangulum II with the MAGIC telescopes from 62.4 h of good-quality data taken between August 2016 and August 2017. We find no gamma-ray excess in the direction of Triangulum II, and upper limits on both the differential and integral gamma-ray flux are presented. Currently, the kinematics of Triangulum II are affected by large uncertainties leading to a bias in the determination of the properties of its dark matter halo. Using a scaling relation between the annihilation J-factor and heliocentric distance of well-known dwarf spheroidal galaxies, we estimate an annihilation J-factor for Triangulum II for WIMP dark matter of log [Jann(0 . 5 °) ∕GeV2cm-5 ] = 19 . 35 ± 0 . 37 . We also derive a dark matter density profile for the object relying on results from resolved simulations of Milky Way sized dark matter halos. We obtain 95% confidence-level limits on the thermally averaged annihilation cross section for WIMP annihilation into various Standard Model channels. The most stringent limits are obtained in the τ- τ+ final state, where a cross section for annihilation down to <σann v > = 3.05 × 10-24 cm3 s-1 is excluded.

External link:
https://ui.adsabs.harvard.edu/abs/2020PDU....2800529A/abstract

Bounds on Lorentz invariance violation from MAGIC observation of GRB 190114C
On January 14, 2019, the Major Atmospheric Gamma Imaging Cherenkov telescopes detected GRB 190114C above 0.2 TeV, recording the most energetic photons ever observed from a gamma-ray burst. We use this unique observation to probe an energy dependence of the speed of light in vacuo for photons as predicted by several quantum gravity models. Based on a set of assumptions on the possible intrinsic spectral and temporal evolution,we obtain competitive lower limits on the quadratic leading order of speed of light modification.

External link:
https://ui.adsabs.harvard.edu/abs/2020arXiv200109728M/abstract

Broadband characterisation of the very intense TeV flares of the blazar 1ES 1959+650 in 2016
1ES 1959+650 is a bright TeV high-frequency-peaked BL Lac object exhibiting interesting features like "orphan" TeV flares and a broad emission in the high-energy regime, that are difficult to interpret using conventional one-zone Synchrotron Self-Compton (SSC) scenarios. We report the results from the Major Atmospheric Gamma Imaging Cherenkov (MAGIC) observations in 2016 along with the multi-wavelength data from the Fermi Large Area Telescope (LAT) and Swift instruments. MAGIC observed 1ES 1959+650 with different emission levels in the very-high-energy (VHE, E >100 GeV) gamma-ray band during 2016. In the long-term data, the X-ray spectrum becomes harder with increasing flux and a hint of a similar trend is also visible in the VHE band. An exceptionally high VHE flux reaching ~ 3 times the Crab Nebula flux was measured by MAGIC on the 13th, 14th of June and 1st July 2016 (the highest flux observed since 2002). During these flares, the high-energy peak of the spectral energy distribution (SED) lies in the VHE domain and extends up to several TeV. The spectrum in the gamma-ray (both Fermi-LAT and VHE bands) and the X-ray bands are quite hard. On 13th June and 1st July 2016, the source showed rapid variations of the VHE flux within timescales of less than an hour. A simple one-zone SSC model can describe the data during the flares requiring moderate to high values of the Doppler factors (>=30-60). Alternatively, the high-energy peak of the SED can be explained by a purely hadronic model attributed to proton-synchrotron radiation with jet power L_{jet}~10^{46} erg/s and under high values of the magnetic field strength (~100 G) and maximum proton energy (~few EeV). Mixed lepto-hadronic models require super-Eddington values of the jet power. We conclude that it is difficult to get detectable neutrino emission from the source during the extreme VHE flaring period of 2016.

External link:
https://ui.adsabs.harvard.edu/abs/2020arXiv200200129M/abstract

Statistics of VHE γ-rays in temporal association with radio giant pulses from the Crab pulsar
Aims.The aim of this study is to search for evidence of a common emission engine between radio giant pulses (GPs) and very-high-energy (VHE, E>100 GeV)γ-rays from the Crab pulsar.Methods.16 hours of simultaneous observations of the Crab pulsar at 1.4 GHz with the Effelsberg radio telescope and the Westerbork Synthesis Radio Telescope (WSRT), and at energies above 60 GeV with the Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) telescopes were performed. We searched for a statistical correlation between the radio and VHE γ-ray emission with search windows of different lengths and different time lags to the arrival times of a radio GP. A dedicated search for an enhancement inthe number of VHE γ-rays correlated with the occurrence of radio GPs was carried out separately for the P1 and P2 phase ranges respectively.Results.99444 radio GPs have been detected in the radio data sample. We find no significant correlation between the GPs and VHE photons in any of the search windows. Depending on phase cuts and the chosen search windows we find upper limits at 95%confidence level on an increase in VHE γ-ray events correlated with radio GPs between 7% and 61% of the average Crab pulsar VHE flux for the P1 and P2 phase ranges respectively. This puts upper limits on the flux increase during a radio GP of 12% to 2900%(depending on search window duration and phase cuts) of the pulsed VHE flux. This is the most stringent upper limit on a correlation betweenγ-ray emission and radio GPs reported so far.

External link:
https://ui.adsabs.harvard.edu/abs/2020A%26A...634A..25M/abstract

MAGIC very large zenith angle observations of the Crab Nebula up to 100 TeV
Aims: We aim to measure the Crab Nebula gamma-ray spectral energy distribution in the ~100 TeV energy domain and test the validity of existing leptonic emission models at these high energies. Methods: We use the novel very large zenith angle observations with the MAGIC telescope system to increase the collection area above 10 TeV. We also develop an auxiliary procedure of monitoring atmospheric transmission in order to assure proper calibration of the accumulated data. This employs recording of optical images of the stellar field next to the source position, which provides a better than 10% accuracy for the transmission measurements. Results: We demonstrate that MAGIC very large zenith angle observations yield a collection area larger than a square kilometer. In only ~56 hr of observations, we detect the gamma-ray emission from the Crab Nebula up to 100 TeV, thus providing the highest energy measurement of this source to date with Imaging Atmospheric Cherenkov Telescopes. Comparing accumulated and archival MAGIC and Fermi/LAT data with some of the existing emission models, we find that none of them provides an accurate description of the 1 GeV to 100 TeV gamma-ray signal.

External link:
https://arxiv.org/abs/2001.09566

Page 1 of 9