Very-high-energy gamma-ray detection and long-term multi-wavelength view of the flaring blazar B2 1811+31
Journal
Accepted in Astronomy & Astrophysics, 2025 (Submitted 2025/03/24)
External url: arXiv abstract
Abstract:
Among the blazars whose emission has been detected up to very-high-energy (VHE; 100 GeV < E < 100 TeV) gamma rays, intermediate synchrotron-peaked BL Lacs (IBLs) are quite rare. The IBL B2 1811+31 (z = 0.117) exhibited intense flaring activity in 2020. Detailed characterization of the source emissions from radio to gamma-ray energies was achieved with quasi-simultaneous observations, which led to the first-time detection of VHE gamma-ray emission from the source with the MAGIC telescopes. In this work, we present a comprehensive multi-wavelength view of B2 1811+31 employing data from MAGIC, Fermi-LAT, Swift-XRT, Swift-UVOT and from several optical and radio ground-based telescopes. We investigate the variability, cross-correlations and classification of the source emissions during low and high states. During the 2020 flaring state, the synchrotron peak frequency shifted to higher values and reached the limit of the IBL classification. Variability in timescales of few hours in the high-energy (HE; 100 MeV < E < 100 GeV) gamma-ray band poses an upper limit of 6 x 10^{14} delta_D cm to the size of the emission region responsible for the gamma-ray flare, delta_D being the relativistic Doppler factor of the region. During the 2020 high state, the average spectrum became harder in the X-ray and HE gamma-ray bands compared to the low states. Conversely, during different activity periods, we find harder-when-brighter trends in X rays and a hint of softer-when-brighter trends at HE gamma rays. Gamma-optical correlation indicates the same emission regions dominate the radiative output in both ranges, whereas the levolution at 15 GHz shows no correlation with the flux at higher frequencies. We test one-zone and two-zone synchrotron-self-Compton models for describing the broad-band spectral energy distribution during the 2020 flare and investigate the self-consistency of the proposed scenario.