Publication details

Long-term multi-wavelength study of 1ES 0647+250

MAGIC collaboration, Acciari et al.


Astron. Astrophys. 670, A49, 2023 (Submitted 2022/11/23)

External urlhttps://doi.org/10.1051/0004-6361/202244477


The BL Lac object 1ES 0647+250 is one of the few distant gamma-ray emitting blazars detected at very high energies (VHE, >100 GeV) during a non-flaring state. It was detected with the MAGIC telescopes during its low activity in the years 2009-2011, as well as during three flaring activities in the years 2014, 2019 and 2020, with the highest VHE flux in the latter epoch. An extensive multi-instrument data set was collected within several coordinated observing campaigns throughout these years. We aim to characterise the long-term multi-band flux variability of 1ES 0647+250, as well as its broadband spectral energy distribution (SED) during four distinct activity states selected in four different epochs, in order to constrain the physical parameters of the blazar emission region under certain assumptions. We evaluate the variability and correlation of the emission in the different energy bands with the fractional variability and the Z-transformed Discrete Correlation Function, as well as its spectral evolution in X-rays and gamma rays. Owing to the controversy in the redshift measurements of 1ES 0647+250 reported in the literature, we also estimate its distance in an indirect manner through the comparison of the GeV and TeV spectra from simultaneous observations with Fermi-LAT and MAGIC during the strongest flaring activity detected to date. Moreover, we interpret the SEDs from the four distinct activity states within the framework of one-component and two-component leptonic models, proposing specific scenarios that are able to reproduce the available multi-instrument data.