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Abstract

We describe the background model implemented in CELESTINA.

1 Introduction
The current CELESTINA version provides two background estimation methods intended to produce skyplots.
A first one is based in the proyection of the events with a reconstructed incident direction located in the half
of the camera where th anti-source is located in the other half of the camera. A second one is the so-called
background model which does not require to know in advance the source and anti-source positions, but only
provides a good estimate for point like sources. This later method is explained in this note, emphasizing the
formal description of the first step of the method, which consists in a linear transformation as we show below.

2 Notation
In this note all the spatial coordinates are in the camera reference frame, where the coordinates of the camera
center are given by 0, 0. The rate per unit area of the gamma source and the background at position x, y are
denotated as S(x, y) and B(x, y) respectively. The total rate per unit area after all analysis cuts is denotated
as M(x, y) = S(x, y) + B(x, y). We use the notation G(x, y|σ) for a the value of a bi-dimensional gaussian
distribution centered at 0, 0, of width σ evaluated at x, y. The PSF of the telescope is called σPSF . The
unknown position of the gamma-ray source is xS , yS . We denote the convolution operation of a function
f(x, y) with a kernel K(x, y) as

K(x, y) ∗ f(x, y) =

∫

dx′dy′f(x′, y′) × K(x′ − x, y′ − y) (1)

3 Background estimate construction
In a firts step, the background model estimate is given by

B∗(x, y) = 2 × G(x, y|
√

2σB) ∗ M(x, y) − G(x, y|σB) ∗ M(x, y) (2)

where σB is a model parameter and the superindice ∗ denotates estimate.
In a second step a further correction of the radial distortions on this estimate is performed by scaling it with

a function depending of the distance to the camera center obtained by fitting

∆(r) =

∫
dx′dy′M(x′, y′)δ(x′2 + y′2 − r2)

∫
dx′dy′B∗(x′, y′)δ(x′2 + y′2 − r2)

(3)

where δ is a Dirac delta distribution. The fit function is an expansion in a normalized radial basis function space
with typically 10 dimensions, although for large statistics this number can be increase. The fit procedure is a
robust Least Trimmed Squares fit using a minimal fraction of the 90% of the points where , which guarantees
that the correction factor is not overestimated in the case a gamma-ray source is in the field of view. Figure 1
shows the typical fit to the function ∆(r) in a case without any signal, showing that it is close to 1 for r < 2◦,
and the correction is maximum at camera center.
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Figure 1: Fit of the correction factor ∆(r).

4 Formal justification
In this section we formally demostrate tha eq. 2 is a good estimate for the background. To this end we
parameterize B(x, y) as

B(x, y) =

N∑

i=1

bi × G(x − xi, y − yi|σB
i ) (4)

where N can be infinity and all bi > 0. Notice that this parameterization is always possible since the set of all
gaussians form an overcomplete basis. In addition we assume that the following approximation holds

S(x, y) = s × G(x − xS , y − ys|σPSF ) (5)

where s is the number of gamma-rays detected from the source. This approximation assumes that the source
is point-like and that no de-rotation is performed, which is the worst case for background estimation because
the signal is concentrated in single point. Nevertheless all the results obtained under this approximation hold if
S(x, y) can be parameterized as B(x, y) in equation 4 with the condition that the corresponding xSi, ySi have
a zero-measure distribution due to the fact that the transformation given by 2 is a linear one.

With these assumption, the estimate given by equation 2 is obtained by sampling from the distribution given
by

B∗(x, y) = 2 × G(
√

2σB) ∗ (B(x, y) + S(x, y)) − G(σB) ∗ (B(x, y) + S(x, y)) =
(

2

N∑

i=1

bi × G

(

x − xi, y − yi|
√

(σB
i )2 + 2σ2

B

)

− bi × G

(

x − xi, y − yi|
√

(σB
i )2 + σ2

B

))

+

(

2s × G

(

x − xS , y − yS |
√

σ2
PSF + 2σ2

B

)

− s × G

(

x − xS , y − yS |
√

σ2
PSF + σ2

B

))

(6)

By choosing a value of σB such that
(σB

i )2 � σ2
B (7)

for any i, and thus
√

(σB
i )2 + σ2

B = σi
B × (1 + O(

σB

(σB
i )2

)) (8)

In consequence we have that eq. 6 can be writen as

B∗(x, y) '
N∑

i=1

bi × G
(
x − xi, y − yi|σB

i

)

︸ ︷︷ ︸

B(x,y)

+O(
σ2

B

(σB
i )2

) +

+ 2s× G

(

x − xS , y − yS |
√

σ2
PSF + 2σ2

B

)

− s × G

(

x − xS , y − yS |
√

σ2
PSF + σ2

B

)

︸ ︷︷ ︸

S∗(x,y)

(9)

where we have defined the function S∗ as the addition of the two last two terms on the right hand side of the
equation, and the term O(ε) means a function of order ε.
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With this, the estimate signal given eq. 9 is

M(x, y) − B∗(x, y) = S(x, y) − S∗(x, y) + O(
σ2

B

(σB
i )2

) (10)

A plot of the function S(x, y) − S∗(x, y) scaled such that S(xS , yS) = 1 is shown in figure 2. It shows that
for σB large enough it is a good approximation for S(x, y). Figure 3 shows these two functions for the case
σB = σPSF , which is the one chosen for the MAGIC-I background model. Moreover, the application of the
multiplicative correction factor defined in eq. 3, by computing M(x, y) − ∆(

√

x2 + y2) × B∗(x, y) instead
of eq. 10 guarantees a better approximation if no gamma-rays source is in the field of view by construction,
and in the the case of the presence of one it applies a further suppression factor to S∗(x, y) due to the Least
Trimmed Squares fit procedure used.
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Figure 2: Plot of the function (S(x, y) − S∗(x, y))2π/s as a function to the distance to xS , yS and the ratio
σB/σPSF .
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Figure 3: Plot of the functions S∗(x, y) = (S(x, y) − S∗(x, y))2π/s and S(x, y)2π/s as a function to the
distance to xS , yS for the parameter condition σB = σPSF .

5 Conclusion
As a conclusion, we can say that M(x, y)−∆(

√

x2 + y2)×B∗(x, y) is an approximation for S(x, y), that in
the case of the parameter σB being equal to σPSF underestimates the true value by less than 20% of S(xS , yS)
close to the point xS , yS , and far from it it approximates to the true value B(x, y), this approximation being
better that of the order of σ2

B/σB
i due to the ∆(r) correction factor. This makes this background approximation

useful to search for serendipitous sources in the field of view of MAGIC-I, although it is not well suited to
provide background estimates useful for flux computations. It remains to show that the condition given by eq.
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7 holds. We have checked this experimentally by explicitly searching for a parameterization as eq. 4, finding
that taking σi ' 0.3◦ for all i such construction is possible giving good residuals. Taking into account that
σPSF ' 0.1◦ above 150 GeV, the value of σB = σPSF is a good compromise between the condition of eq. 7
and the necessity of taking a large enough value for the parameter as illustrated by figure 2.
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