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Calculation of Confidence Intervals

* Baye’s theorem
 The likelihood principle (LP)
 The likelihood ratio test

* Different kinds of intervals (ordering algorithms)

* Bayesian confidence intervals
 Frequentist (classical) confidence intervals
e Likelihood-ratio (LR) intervals

 Treatment of nuisance parameters

« Comparison of different approaches



Baye’s theorem

P(A|B)-P(B) = P(ANB) = P(B| A)- P(4)

T

— conditional probability for 4, given B

Example: P(B/A) = Poiss(B;4) = —-exp(—A4)

P(B/ A)- P(A)

P(A] B) = 20

P(B)=Y P(B/A)-P(4)

Poiss(B; A)

if P(A) = const = P(A/B) = -
Poiss(B; A)
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B Baye's theorem :
P(A|B)-P(B) = P(AnB) = P(B|A)-P(A)
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The likelihood principle (LP)

One assumes that an observation x follows a given probability
density f(x; A) with unknown parameter 4.

The LP states : 7he information contained in an observation x,
with respect to the parameter A is summarized by the likelihood
function L(4; x,) = f(x,; A). All what matters for the parameter
inference is L(A, x,). Measurements different from x, are
irrelevant.

The LP relies on the strict validity of the probability density.
Therefore, methods based on the likelihood function often are
very sensitive to unknown biases, backgrounds and losses.

The LP 1s not fully accepted by all statisticians.



Neyman-Pearson lemma

(see K.S. Cranmer, physics/0310108)
G1ven a certain measurement x, the likelihood ratio

LR(x) = L(x; Hy)) /L(x; H))
is the most powerful variable or test statistic for discriminating between
* a simple null hypothesis (H,, background only)
e and another hypothesis (H,, signal plus background)

For a proof see J.Stuart, A.Ord and S.Arnold, “Kendall’s Advanced Theory of Statistics™, Vol 2A
(6 Ed.) (Oxford University Press, New York, 1994)

If 17 1s the acceptance region for //, for a confidence level a, the

probability for a Type [ errorisequalto 1—a = 1- jL(x; )-dx
w

the probability for a Type Il error is f = jL(x; H)-dx = J Lxf,) - dx
o » LR(x) o



The acceptance region W which minimizes the rate of Type Il errors
(maximizes the power), mistaking the signal for a background
fluctuation, rejecting /7, although /7, is true,

is given by : W = (x | LR(x) = EEX;H; > kaj
x; H,

The constant k 1s determined from L(x; H,) and the confidence level « :

asz(x; )-dx = I L(x;H ) dx

LR(x) > k,

@ Note : The LR is used as ordering quantity only. The probability
distribution of the LR 1s not used.



Likelihood ratio ordering
.-..105§ W o = confidence level
% 4 nd — . .
F0E accept H, < |— accept H, LR(x) = L(x;Hy) / L(x;H))
10° :
10° acceptance region for /,,
10 is defined by
R SN LR>k, = LR(x,,) or
10-1 xuf
102 o = L(x;H ) dx
10“3;? N
T = | L(x; /) dx
2 LR(x) > k,
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The likelihood ratio test

G1iven a certain measurement, calculate the likelithood to obtain this
measurement assuming a certain hypothesis.

L, maximum likelithood value for the hypothesis H,
L, maximum likelihood value for the same hypothesis but with
additional constraints (/4,, with k parameters less than ;)

The likelihood ratio LR=LyL, 1s then always between 0 and 1.

If H, 1s true, the log-likelihood ratio 4 =-2 In(LR) follows
approximately a y ° distribution with & degrees of freedom.

The hypothesis H, 1s rejected at the a-confidence level if
/ is larger than the y ° value corresponding to the a-quantile

of the y Z distribution with & degrees of freedom.

O Note : the probability distribution of the LR 1s used to calculate
the acceptance region for H,,.



Difterent kinds of intervals

[ =lower edge P ()
u = upper edge /‘ |

of interval /
I u X
Require J. p(x)dx = a ( )
[
[ 00
e central interval : jp(x) dx = jp(x) dx = (1-a)/2
e symmetric interval : - - = u—x
* highest-probability interval : p(l) = p(u)
e selective mterval : for example LR(l) = LR(u), LR = likelithood ratio
* minimum-size interval : | —/| = minimum

e intervals for lower or upper llmits: y = oo or [ = - 10



The different intervals are based on different ordering principles,
which define the ordgr in which a region in x 1s added to the
interval (/,u), until I p(x)dx = o .

[

In the different approaches different probabilities p(x) are used :

 Bayesian approach : p(A) = g(4;a) [g(4;a)-dA=1
y
to calculate the confidence region of 4, given a
» Frequentist approach :  p(a) = f(a,; A) jf(a;A)-da =1

to calculate the acceptance region of a, given 4

where 4 is the parameter and a the measurement.
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Properties of different intervals

(see G. Zech, “Frequentist and Bayesian confidence intervals”,
hep-ex/0106023)

* central intervals : - invariant against variable and parameter transformations
- restricted to the case with 1 variable and 1 parameter

* highest-probability intervals : - not invariant under variable transformations
- less “biased” than central intervals

* minimum-size intervals : - not invariant under parameter transformations
« symmetric intervals : - not invariant under parameter transformations

e selective intervals : - invariant under transformations of variables and

parameters, independent of their dimensions
12



Understanding of confidence interval (/,u)

If o 1s the (68.27 %, 90 %, 95 %, 95.45 %,
99 %,  99.73 %, 99.9 %, 99.99 %,
Fle o) 99.9937 %, 99.999943 %)
/ \ corresponding to
VAR ( lo, 1640, 1965, 20,

a
(1-0)/2 (1-0)/2 2.58 o, 30, 3.290, | 3.89 o,
_ - 4 G, 56) central intervals

-3 -2 -1 0 1 2 3
(x—) /o

* the true value 1s contained in the interval (/,u) with a probability
« if a large number of experiments is performed under identical

conditions the true value will be within (/,u) in a fraction o of the

experiments 13



Bayesian approach

The method contains a probability function z(4) (prior distribution),
reflecting the experimenter’s subjective degree of belief about 4

before the measurement 1s carried out.
Example : 7(4) =const forA,<A<A, 7w(A)=0 otherwise

Problem : 7(4) depends on the metric of 4
should dN/dA be const or dN/dy, where y = h(A4)
ify=mA — dN/dA =dN/dy-dy/dA = 1/4

m(A) 1s appropriate to specify a prior knowledge about 4,
it 1s less suitable to specify ignorance about 4

14



Frequentist (classical) approach

A prior distribution 7(4) does not appear in this method.
All calculations are based on the probability distribution
f(a; A) for a , given the true value 4.

15



Bayesian confidence intervals

f(a; A)  probability to measure a, 1f the unknown parameter has
the value 4
ACI
-exp(-A4)
a!

a = measured number of signal events

Example : f(a;A) = Poisson (a; A) =

A = true average value of number of signal events

Baye’s theorem : g(A4;a) = Z{F?(aAZ;ZEiZ)

(posterior prob. distr.)

Poisson(a; A)

assume 7(A4) = const — Aya) = =
@ g(4a) ZPoisson(a;A)
A

16



distribution of @, given 4 : distribution of 4, given a :

f(a;, A) = Poisson(a; A) Poisson(a; A)
m(A) = const g(4a) = - P
> Poisson(a; A)
PoissFlat A
“10- o000 e :
B . . 0 o 4 o |Meanx 48 given the measurement a,
i} - M 4.94 . .
L N B T determine the Bayesian
- RMSy --3:141 .
B 50000 8 o v confidence interval (/(a),u(a))
6— ° 0000058 5 +iv - for A by the condition
L o O 00O o o - E S N u(a)
4-'c 000 O o ot -« o J.‘g(z4;a) d4 =
D000 8 ate o oo e I(a)
20 [ ai- - « - - assuming a certain ordering
I eie o c o0 principle (central interval,
0_| 1 | | L 1 1 | 1 1 | | I | 1 1 | | [ | L 1 1 | upper limit, Y .)

0 2 4 6 8 10 12 14
a 17



The Bayesian limits (/(a),u(a)) for A depend on

* the measurement a
e the ordering principle
(order in which points are added to the confidence interval)
* the confidence level o
* the prior distribution 7(4)

The limits (/(a),u(a)) define the “confidence belt” in the 4-a plane.

Measurements different from @ don’t appear in the calculation of (/(a),u(a)).

Bayesian coverage :

One performs a large number of experiments, with a distribution of 4
values according to 7(4). The experiments will have 4 values within
(I(a),u(a)) 1 a fraction a of all cases.

Bayesian intervals have Bayesian coverage by construction.
18



Frequentist confidence intervals

Neyman construction of confidence intervals (see J. Neyman,
Phil. Trans. Royal Soc. London, Series A, 236 (1937) 333)

f(a, A) probability for measuring a if the unknown parameter

has the value 4
For each value 4 define an acceptance interval R (4) = (a,;(4), a,(4))
a,(A)
of a by the condition J- f(a;A)-da = « (o = confidence level)
a ()

The region between the lines a,(4) and a,(4), which may also be denoted
by A4,(a) and 4,(a), 1s called “confidence belt”.

For a given measurement a define the confidence interval R ,(a) of A as
follows: 1include in R ,(a) all those 4 whose acceptance interval R (A4)

contains a — R, (a) =(A,(a), A,(a)).

19



A
A4

Confidence belt

confidence
belt

454y

(a,(A,), a,(Ay) ) acceptance interval of a, for4 = 4,
(A,(ay), Ax(ay) ) confidence interval of 4, 1f measurement 1s a,,

For a given measurement a,, 4, lies in confidence interval (4,(a,), 4,(a,))
of A 1f and only if a, lies in acceptance region (a,(4,), a,(4y)) of a .
—= P(4,(ay) <A< Ay(ay)) = P(a,(4dy) <a< a)4dy) )= «a

20



A

Upper limits region .
0

upper limits
region

alow(AO)

v

%)

(a>a,, (A, ) acceptance interval of a,for4 =4,
(A<A4,(ay) contfidence interval of 4, if measurement 1s q,,

For a given measurement a,), 4, lies in confidence interval of 4
(A<A,,(ay )1t and only 1f a,lies in acceptance region of a (a > a,,,(4,) )
- P(A0< Aup(aO) ) - P(a0 > alow(AO) ) -

21



1.0
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0.4

0.2

0.0

X
Fig. 5. Likelihood ratio ordering. The likelihood
ratios are equal at the limits of the shaded region.

Different ordering principles in different Frequentist approaches :

e classical : central, symmetric or highest probability intervals

e unified classical :  selective intervals, like highest LR

L mean = 1

likelihood ratio

(G. Zech, “Frequentist and Bayesian confidence
intervals”, hep-ex/0106023)

Advantages of a highest likelthood

ratio (LR) interval as compared

to a central interval :

* it provides a smooth transition from
an o-confidence interval to an

* it often avoids unphysical or empty
intervals

e it 1s also invariant against
transformations of variables and
parameters (independent of the

dimensions)
22



Flip-flopping “problem”

“If the result x 1s less than 3, I will state an upper limit. Otherwise I will
state a central confidence interval. This policy leads to undercoverage.
The experimenter should decide before looking at the data.”

F&C, PR D57 (1998) 3873 flxwo)
6_||||||||||||||||||||||||_ /\
<L /é— 90 % central / \
: 71 conf. interval
L - * o
s f // ] (1-0)/2 (1-0)/2
i - 90 % 11.1/ - | | | | | J
I3 -3 -2 -1 1 2 3
l: / 7 wie
2 7 - (1+0)/2
E undercoveragef” 3 . o
LT - The “problem™ 1s due to identifying
g Lok b ...}....34 an o-c.l. upper limit with the upper
Measured Mean x end of an a-c.l. central conf. interval.
FIG. 4. Plot of confidence belts implicitly used for 90% C.L. confidence intervals {vertical This iS Wr()ng. There is nO prOblem.
intervals between the belts) quoted by flip-flopping Physicist X, described in the text. They are 23

not valid confidence belts, since they can cover the true value at a frequency less than the stated
confidence level. For 136 < p < 4.28, the coverage (probability contained in the horizontal
acceptance interval) is 85%.



More general definition of acceptance interval

e define the acceptance interval R (4) of a by a test (y° test,
likelihood test): the hypothesis 4 1s accepted if a 1s within R (4)

* then proceed as before: given a measurement a, accept those 4 in
the confidence interval R ,(a) of 4, for which the measurememt a 1s

contained in the acceptance interval R (4)

24



Newman construction in more than one dimension

Assume the measurements (x,)) to be distributed according to
f(x,y;A,B), with parameters 4 and B, whose values are unknown

" For each pair (4, B) determine the acceptance region R, (4,B) of
(x,»), using some ordering algorithm

* Given a measurement (x,)), the confidence region R 5 (x,y) for
(4,B) 1s found as follows : include in R ;5 (x,y) all those pairs (4,5)
for which (x,y) 1s contained in R, (4, B)

25



W.A. Rolke and A.M. Lopez, NIM A458 (2001) 745

¥=3y=3

x=4y=3

T
——
T o _H_
| \
i
.__H__,_,—o—""-'-/
a 2 d & G ] 10

[}

=Gy=3

TH

", _“_'_,_,_:—
=

- 1] 12

T
¥=5y=3
-"‘-\_‘_H_\-\\
o o
=
o~ o
\E_ﬁ_; ) /

=

10 12

B}

Fig. 1. Two dimensional confidence regions for » = 3, 4,5 and 6 =signal events, and

y = 3 baclground events. The background region is twice the size of the signal

region, and a 90% confidence level was used.

Confidence regions for (u,b)
for different measurements (X,y),
with x = Poisson(x; pu+b)

y = Poisson(y; tb),
a=90%, t= 2
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Frequentist coverage

If a large number of experiments 1s performed under 1dentical conditions
a confidence region R z(x,y) of (4,5) 1s said to have exact coverage

if the pair of values (4,,B,) 1s contained in R ,z(x,)) 1n a fraction «a of all
experiments.

Frequentist confidence regions have Frequentist coverage by definition.

27



Likelihood ratio intervals

f(a;, A)  probability to measure a, if the unknown parameter has
the value 4

Define the likelihood function L(4, a) as  L(A4; a) =f(a, A)
For a given measurement «a, find 4., which maximizes L(4, a)
Define the LR interval (4,,,, 4,,) by the requirement

L(Alow) . . . L(AUP)
VS A TV

InL(Apey ) -1n L(4,,,) = 4 = InL(Ap,)-1n L(4,,)

where A= n?/2 for a confidence level of no

28



Likelihood ratio intervals Bayesian interval

mean /r.m.s.

L(A;a) L L(A;a) o
ge] o 3 68.3 % confidence
Q o
@] L
< st. dev. o =
§ Lmax f e é
2 st. dev L /¢
decay constant A decay constant A

Fig. 18. Likelihood ratio limits (left) and Bayesian limits (right)
(G. Zech, “Frequentist and Bayesian confidence intervals”, hep-ex/0106023)

If L(A; a) = Gauss(a,; A,oc), the LR intervals are identical to the

Bayesian confidence intervals, obtained with a uniform prior

29



Example for the construction of a Likelihood ratio interval :

a number of signal events when true average is 4 (unknown)
b number of background events when true average is B (known)
One measures x = a+b. Assume a and b to be distributed like

Poisson (a; A) and Poisson (b, B) respectively
The likelihood function is
L(A; x) = Poisson(x; A+B) = (A;'B)x
get LR interval (4,,,, 4,,) for A by determining the 4 at which
L(4; x) = maximum (=L, ) and L(A,, ., x)/L,,. =exp(-1/2)

L(A,, x) /L, =exp(-1/2)

-exp(—A4—B)

Forx=0 — L(A4;x=0) = exp(—4), independentof B

30



Comparison of Bayesian, Frequentist and LR intervals

R.D. Cousins (PHYSTATOS)

Table 1. 68% C.L. intervals for the mean p of a Poisson dis-
tribution, based on the single observation ng = 3, calculated
by various methods. Only the frequentist intervals avoid un-
der-coverage for all values of ;. The boldface numbers highlight
the fact that the frequentist central interval shares the right end-
point with the Bayesian interval with uniform prior, and the left
endpoint with the Bayesian interval with 1/u prior, explaining
why neither set of Bayesian intervals covers for all values of 1.

Method Prior Interval Length

rms deviation - (1.27, 4.73) 3.46 0 .

Bayesian central 1 (2.09,5.92) 3.83 68 A) Conﬁdence lntervals
Bayesian shortest 1 (1.55, 5.15) 3.60 f h A

Bayesian central 1/p 4.64) 3.27 or the mean

Bayesian shortest 1/p (0.86, 3.85) 2.99 L .

Likelihood ratio - (1.58, 5.08) 3.50 f(X, A) — POZSSO”(X, A)
Frequentist central - @.37X 5.9) 4.55 . .
Frequentist shortest - (1.29, 5.25) 3.96 Wlth the measurement x = 3
Frequentist LR ordering — (1.10, 5.30) 4.20
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Comparison of Frequentist and LR approach

1.0
J(x; 0)

0.8
0.6

0.4

probability density

0.2

0.0

f(xo,)

observation X = Xp

Frequentist approach :

considers f(x, ¢,) and
f(x; 0,) over a wide
range of x ; x, 1s within
acceptance region of ¢,

LR approach :

considers f(x,; 0 )/f(x, 0.)
atx = x,only ;
¢, 1s accepted

Fig. 1. The likelihood 1s larger for parameter #;, but the observation is less then 1 st.
dev. off #,. Classical approaches include #, and exclude #; within a 68.3% confidence

interval

(G. Zech, “Frequentist and Bayesian confidence intervals”, hep-ex/0106023)
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An 1nteresting special example

* Fewer events (7) 1n signal region than expected from background

Helene : for n = 0, upper limit of 4 = 2.3 (independent of B)
F&C :forn = 0, “upper limit” of 4 decreases as B increases
for any n, “upper limit” tends to 1 as B goesto o

Suggestion by F&C :
if “upper limit” 1s less than “sensitivity” give both.
sensitivity(B) = average “upper limit” in an ensemble of
experiments with 4 = 0;
This 1s an average over all possible

measurements with 4=0 and B.

33



O.Helene,

NIM 212 (1983) 319

G.J.Feldman and R.D.Cousins,
PR D57 (1998) 3873

a=0.10

40

T

=.
215
=
>
310
2
o
a0
25
=
0 | ! 1 0
0 5 5 20 B

Fig. 2. The same as figure 1, here to 90% (a = 0.10) confidence

level.

90 % c.l. upper limit

" 10.evedts.observe

5 10
Mean Expected Backgr

15

ound b

FIG. 8. Upper end p; of our 90% C.L. confidence intervals [j,, gi5], for unknown Poisson signal

mean & in the presence of expected Poisson background with kmown mean 6. The curves for the
cases fig from 0 through 10 are plotted. Dotted portions on the upper left indicate regions where
g1 5 non-zero (and shown in the following figure). Dashed portions in the lower right indicate
regions where the probability of obtaining the number of events observed or fewer is less than 1%,

even if g = 0.

upper end of 90 % conf. interva
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n = Poisson(n; u+b) measure n=0

1.4 —‘—{G <:>

90 % upper limits

c: classical

f : unified classical

b : Bayesian

likelihood

— L(un=0) = exp(-11)

Fig. 16. Likelihood function for zero observed events and 90% confidence upper limits
with and without background expectation. The labels refer to [9] (f), Bayesian (b), [41]
(g) and [42] (1)

(G. Zech, “Frequentist and Bayesian confidence intervals”, hep-ex/0106023) 35



End of part 1
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Nuisance parameters

 parameters whose values have to be known for calculating a
result but which carry no information about the result and
» whose uncertainties affect the uncertainty of the final result

of nuisance parameters :
 background under the signal
» efficiency for measuring the signal (acceptance, A _x)

Given the measurements x, y and z of

e the no. of events 1n the signal region (x)

* the no. of events in the background region (v)

e the no. of signal events surviving the analysis cuts (MC) (z)

What are the limits (/) for the true average number 4 of signal
events ? 37



Treatment of nuisance parameters in the
Bayesian approach

1) B 1s exactly known (see O.Helene, NIM 212 (1983) 319) :

a number of signal events when true average i1s A (unknown)

b number of background events when true average is B (known)
One measures x = a+b. Assume x to be distributed like

f(x; A,B) = Poisson (x; A+B), where A 1s unknown and B is known

f(x;A4,B)-7(A)

A: : S
8ol % 5) | f(x;4,B)-7(A)-dA

B Poisson (x; A+ B)
J‘ Poisson (x; A+ B)-dA
A

(for 7 (A) = const)

38



Given the measurement x and the known true number of background
events B, determine the Bayesian confidence interval ({/(x,B), u(x,B))

u(x,B)
for A by the condition j g,(A4;x,B)dA =

[(x,B)

assuming a certain ordering principle (central interval, upper limit, ...)

As long as the nuisance parameter 1s exactly known (error = 0)

no special procedure 1s needed for its treatment.

39



2) B 1s not exactly known (see O.Helene, NIM 212 (1983) 319) :

a number of signal events when the true average is A (unknown)

b number of background events in the signal region when the
true average is B (unknown)

y number of background events in the background region when the
true average 1s 5 ; t = (size of bg region) / (size of signal region)

One measures x = a+b and y. Assume x and y to be distributed
like f(x,y; A,B) = Poisson(x; A+ B)- Poisson(y; 7-B)
where both 4 and B are unknown

j f(x,y,4,B)-7(A)-7(B)-dB

A' _ B — — ~
g(4; x,y) ”f(x,y;A,B)-7Z(A)°7T(B)'dB'dA

with the prior distributions 7(4) and 7(B) (Baye's theorem)

40



Given the measurements x and y, determine the Bayesian confidence
interval (I(x,y), u(x,y)) for A by the condition

u(x,y)
g (A;x,y)dA =

[(x,y)

assuming a certain ordering principle (central interval, upper limit, ...)

41



Treatment of nuisance parameters in the

Frequentist approach

The average value B of the background is exactly known

The average value B of the background is not exactly known

42



The average value B of the background
1s exactly known

(see G.J. Feldman and R.D. Cousins, PR D57 (1998) 3873)

a number of signal events when the true average 1s A (unknown)
b number of background events when the true average is B (Known)

One measures x = a+b. Assume x to be distributed like
f(x; A,B) = Poisson (x; A+B), where A 1s unknown and B 1s known

For each value 4 define an acceptance interval R (4) = (x,(4), x,(4)) of x by

x(A)
the condition I f(x;4,B)-dx = «a (o =confidence level)

x;(A4)

using as ordering quantity the likelihood ratio LR = f(x,; A,B) / f(x; A},.,B),
where 4, 1s that (physically allowed) value of 4 which maximizes f(x,4,5)

43



Determine the confidence interval R ,(x) of 4 in the usual way:
R ,(x) contains all those 4 whose acceptance region R (4) contains
the measurement x

15 B =3 0=90%
14
4 i . .

12 the ordering quantity is the

-1 likelihood ratio

g§° = LR = f(x; A,B) / f(x; Apesp B),

5 ¢ = As long as the nuisance parameter 1s
: = exactly known (error = 0)
2 |t - no special procedure is needed for its
; B treatment.

012 345678 9101112131415

Measured n X
G.J.Feldman and R.D. Cousins,
FIG. 7. Confidence belt based on our ordering principle, for 90% C.L. confidence intervals for

unknown Poisson signal mean p in the presence of Poisson background with known mean & = 3.0. PR D57 (1998) 3 873 44



Critical remarks to the paper of F & C

 The flip-flopping problem : “In the classical approach you may
decide to quote an upper limit or a confidence interval, after having
had a look at the data. This policy leads to undercoverage, in
general.”

This statement 1s wrong : coverage has nothing to do with the above
decision. The experimenter can quote an upper limit or a confidence
interval, or both, without violating coverage.

In F&C’s paper the apparent flip-flopping problem arises from the
fact that they consider as altenatives the upper end of a 90% c.l.
central interval with a 90% c.1. upper limit. The problem would not
arise if they considered as alternatives the upper end of a 90% c.l.

central interval with a 95% c.l. upper limit.
45



 Unified approach : “Using the LR as ordering quantity one obtains
intervals which automatically change from two-sided intervals to
upper limits. This eliminates undercoverage caused by basing this
choice on the data (flip-flopping).”

It 1s true that the upper end of any confidence interval can be
understood as an upper limit, however, at different confidence levels,
in general. Even in the unified approach the acceptance intervals are
two-sided, implying that the upper end of the confidence interval is an
upper limit at a different confidence level than the confidence
interval. Even if the confidence interval is one-sided (because its
lower end coincides with the lowest physically allowed value, for
example) the upper end doesn’t become an upper limit at the same c.l.
as the confidence interval.
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II.

I1I.

IV.

The average value B of the background 1s
not exactly known

Neyman construction in more dimensions + projection

Profile LR used as ordering quantity (Cranmer, Punzi);

Neyman construction in 2 dimensions (physics p. and nuisance p.)

Profile LR used to construct confidence interval (Rolke & Lopez);
Neyman construction in 1 dimension (physics parameter only)

Mixed Frequentist-Bayesian approach (Cousins & Highland)
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[. Neyman construction in more dimensions + projection

(see G. Punzi, “Including systematic uncertainties in Confidence Limits”, CDF report (2003))

x number of signal events when the true average i1s A (unknown)
y number of background events in the signal region
b number of background events when the true average is B (unknown)

one measures ¢ = x+y and b ;
assume (a,b) to be distributed like f(a,b; A,B)

For each point (4,5) define an acceptance region R _,(4,5) of (a,b) by
the condition j f(a,b;A,B)-dadb = «o (e = confidence level)
Rap

using some ordering algorithm.
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Then proceed as usual to find, for a given measurement (a,b),
the confidence region R ;gz(a,b) of (4,8) : include in R ;4(a,b) all
those (4, B) for which (a,b) 1s within R ,(4,5).

In order to get the limits for the physical parameter 4, one needs to
“project” the confidence region in the (4,5) plane onto the A axis.
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“Projection” of the confidence region in the (i, v) plane onto the u axis :
the confidence region in (i, v) has exact coverage, by construction;
by the extension to the shaded area (blue) the coverage 1s increased

"v’
6.5} 68 % confidence region

! /’“’""";f::.'.ﬁ.':_'f'_'::'f_"“=~~~-H. / for a given measurement
5.5 { e G e TR
5. - = _é)(\\

5 \\\x \j\,&_h \/ - \
-0 e e | ) u 1s physical parameter
- V 1S nuisance parameter

3 4 5 6 7 ; M

Figure 3: Likelihood ratio contours, and CR on g obtained from ecither P or
[.R-ordering in the (p, v) space (F-C)

(G. Punzi, “Including systematic uncertainties in Confidence Limits”, CDF report (2003)) 50



Problems with this procedure :

* the projection often leads to large overcoverage

e the procedure 1s sensitive to the choice of the ordering algorithm

» often the limits obtained with small systematics are quite different
from the ones obtained 1n the absence of that systematics

» the calculations can be complex and CPU-time consuming
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II. Profile Likelihood ratio used as ordering quantity

( M. Kendall and A. Stuart, “The Advanced Theory of Statistics™ (1961),
K.S. Cranmer, PHYSTAT2003, G. Punzi, PHYSTATO0S )

The profile LR 1s defined as

A A,B) where B maximizes f{a,b; A,B) with fixed a,b,4
o f(a,b; A,B) and A,B maximize f{a,b; 4,B) with fixed a,b
[(a,b; A) 1s a good test statistic for the hypothesis A.

A
A

Do the Neyman construction in 2 dimensions (4,B8). Use profile LR
(which 1s independent of B) as ordering quantity, for each value of B.

To be used together with the pdf f(a,b; A,B) (which depends on B)
for constructing the acceptance regions R ,(A4,B) :

R, (A,B) ={ab| l(a,b;A)> 1(4,B) } [f(a,b;A4,B)-dadb = a

Rab 52



Note : acceptance regions for different B, for the same 4, will only differ
in [/ (4,B), and will therefore be included in one another.

Aim : by using an ordering quantity which 1s independent of B construct
acceptance regions R ,(4,B) which depend only little on B.

1s independent of B

R, (AB) ={ab| lab;A)> L(A4,B) } -
w(4B) = {ab | Kab;d)> 1(4B) | if [ (4,B) is independent of B

Modify the above definition of R ,(4,B) by excluding those 5 which
are extremely unlikely: f(a,b; A,B) <¢
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Special ordering function

G.Punzi, physics/0511202, / ])(T e ‘/.i.- E)d’l?de > (']
PHYSTATO5 Jf (@, esp,e)>c(p.e) | |

[l ep) = / p(a’|e: u, é(e))da’
T J fo(x’)<fo(x)

With hfg(x) :f (X,'lLt) / f (x’./ubeSI) ’

this ordering principle is
approximately equivalent to an
ordering based on the profile LR

Example :
f(x,e; w,e,b)= Poisson(x, ¢u+b)
- Gauss(e; &,0)

coverage 1s close to a = 90 %

Fig. 2. Coverage plot for Unified limits, Gaussian uncer- o4
tainty, b = 3.0 = 0.1.



IT1I. Profile Likelihood ratio used to construct
confidence intervals

(G. Feldman, Fermilab workshop 2000, W.A.Rolke et al., NIM A458 (2001) 745)

Eliminate nuisance parameter by constructing the acceptance region
of A for the optimum value of the nuisance parameter.

a number of signal events when the true average is A (unknown)

b number of background events in the signal region when the
true average is B (unknown)

y number of background events in the background region when the
true average 1s 5 ; t = (size of bg region) / (size of signal region)

One measures x = a+b and y. Assume x and y to be distributed
like f(x,y; A,B) = Poisson(x; A+ B)- Poisson(y; t-B)

where both 4 and B are unknown. cc



Case x >> y/t

(no. of observed events in signal region >> average expected background)

f(x,y; 4, B)
max(f(x,y; 4, B))

E(A;x, y) 1s that B which maximizes f (x, y; A, B), atfixed 4,x,y
(profile likelihood function)

* Define the likelihood ratio A(A4;x,y) =

A(A; x,y) 1s a good test statistic for the hypothesis 4. At fixed 4,
1.e. 1if A4 1s the true value of the parameter, L(4, x,y) = -2 In A(A; x,y) 1S
approximately y *-distributed with

no.of degrees of freedom = npar, -nparg, 4 (x >> y/1)

* Define acceptance regions R, (4) using the distribution of

A(A; xy) 0 R(A)={xy; | LA, xy) < o (@) } 56



« Given a measurement (x,)), accept all those 4 1n the confidence
interval R ,(x,y) of A for which (x,)) 1s acceptable, 1.e for which

L(A; xy) < X cul®)-

-2 InA(A; x,y) vs. A

o

() =(6,2), T=2, a="90 %

—  b6=x>yr=1

Confidence interval

for A
: “ 22227706 = y2,,(0)

% ChiSquare(0.9,df=1)

— e 2 =)

0 2 4 6 8 10 12

W.A. Rolke and A.M. Lopez""NIM A458 (2004) 745

Fig. 2. Profile likelihood function with two-sided limits for the case of © = 6 events in
=

the signal region and y = 2 events in the background region. The background region
is twice the size of the signal region (v = 2). The nominal coverage probability is

0.9,



» Since y °, () is independent of 4 only the actual measurement
(x,y) enters. The method thus obeys the likelihood principle.

 The acceptance intervals are determined using the pdf of L(4; x,y) at
fixed 4, not the pdf of L(4, x,y) at fixed (x,y). Thus the method is a
Frequentist method.

 Although the construction of the acceptance intervals 1s done
effectively in 1 dimension (the physics parameter), coverage is
tested 1n 2 dimensions (physics + nuisance parameter). The method
yields confidence intervals with good coverage, throughout the
parameter space, even at its boundaries.

In contrast to Cranmer, Punzi 4(4; x,y) 1s not used as ordering
quantity but rather as a test statistic to define the acceptance
regions R, (4) in (x,y) and the confidence interval R,(x,y) of 4.

The same method 1s also used in the minimization program
package MINUIT (F. James).
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Casex <yt

(no. of observed events in signal region < average expected background)

* Determine for each (4,5) the acceptance region ny(A,B) of (x,y)

* Given the measurement (X,y), define the confidence region

R 5(x) of (4,B)
* Determine the limits of 4 as the intersection points of the profile

likelihood curve B(A) with the contour of R »(x,))
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W.A. Rolke and A.M. Lopez, NIM A458 (2001) 745

=2, =90 %
(x,y)=(0,1) —» 0=x<yr=0.5
x,y)=(13) —» I=x<y7r=1.5

—— profile likelithood function
B(4;x,)
( 1t maximizes f(x,y,; A,B) )

Fig. 3. Confidence region withprofile likelihood curve ulfl upper bounds for the

cases r =0, y=1land xr =1,y =3

confidence regions of 4 50



IV. Mixed Frequentist-Bayesian approach

(R.D. Cousins and V.L. Highland, NIM A320 (1992) 331,

G.C. Hill, Comments on “Including systematic uncertainties in confidence interval
construction for Poisson statistics”,

PR D67 (2003) 118101; J. Conrad et al., PR D67 (2003) 012002 )

f(x; A) = Poisson(x, A)
Assume that there is an additional systematic normalization error

in the order o,. Take this into account by replacing f(x;, 4) by
f(x;4,0,) = jf(x; s-A) - Gauss(s; 1,0,)-ds

Use this probability distribution for constructing the acceptance
interval R (A4), assuming a certain ordering quantity O :

F&C: O, =f(x; A,B) /f(x; Ay,.,B) where B is known and fixed
here: O, =f(x; A, 0)/f(x; 4,,, 0,) Yyields unsatisfactory results
better : O; =f(x; 4, 0.) /f(x; Ay,



f(x;4,0,) = jPoisson(x;s-A) - Gauss(s; 1, o )-ds

M6 L9) - 90%
Poisson(x; 4,,,)

ordering quantity LR =

4 5 best LR confidence
5_ intervals for A4 :
U.Schwanke & 3_ s~
- O, — 20 %
T.Lohse (2004) 2

Measured Mean x

Figure 7:  Confidence intervals calculated in the Feldman Cousins approach for
a CL of 90%. The solid red curves correspond to the case of no systematic error.
The blue dotted curves were calculated using the Likelihood Ratio of Eq. (7) with
a systematic error of og = 20%. 62



End of part 2
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Critisism of Bayesian approach

e prior distribution represents a subjective belief about 4;
the results 1s therefore not an objective answer to the problem
e the use of a uniform prior distribution (to express ignorance
about A) 1s problematic (dependence on metric)
* Bayesian confidence intervals have bad Frequentist coverage

(over and/or undercoverage)

Main advantages :
e casy treatment of nuisance parameters
« Bayesian approach obeys the likelithood principle

(only the actual measurements enter in the calculations)
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Critisism of Frequentist (classical) approach

e elimination of nuisance parameters is problematic
» the likelihood principle 1s violated; this means that some
available information is ignored
e results are sometimes counterintuitive :
- with 0 observed events upper limit decreases with
Increasing average background level

- adding additional information causes the limits to widen
dramatically (G. Punzi, Durham 2002)

Main advantages :

* confidence intervals have exact Frequentist coverage
(except with discrete measurements)

e invariance against variable and parameter transformations,

independent of the dimensions (in the unified classical approach)
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Critisism of LR approach

e elimination of nuisance parameters is problematic

e if maximum of LR 1s outside (or close to the border of) the
physical region errors become unrealistic

 simple LR intervals are not confidence intervals

Main advantages :

* invariance against variable and parameter transformations

« combination of measurements (without loss of information) is
straightforward : add their log-likelihood functions

* the LR approach 1s able to handle a discrete sample space
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Criteria used when comparing different approaches

 Consistency : Support of a hypothesis must not be affected by
information judged intuitively to be irrelevant (example : Poisson

case with expected average background and 0 events observed).

* Precision : The interval should represent a measure for the relative
precision of different experimental results; the interval should serve
as a check of the compatibility of the measurement with a theoretical

prediction.

« Universality : The method should cope with all special cases, such
as elimination of nuisance parameters, discrete and continuous
measurements and parameters, ... .

. : The results should not depend on the experimenter’s
subjective believe. 67



» Coverage : Good (Frequentist) coverage means that the true value 1s
within the interval with high probability. It does not mean that any

parameter within the interval is true with high probability.

* [nvariance against transformations of measurements and parameters :

The intervals should be the same using the original variables or the

transformed ones.

e Nuisance parameters : Elimination of nuisance parameters should

be possible.

« Combining data : The combination of confidence intervals should
be possible.

e Likelihood principle : The intervals should not violate this principle.

* Bias : the expectation value of the estimator of a parameter should
be equal to the parameter.
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* Error propagation : requires not only an error interval but also

a parameter estimate
* The limits given should effectively convey the information

content of the experiment

69



Comparison of different approaches

Table 4. Comparison of different approaches to define error intervals,

method: classical unified likelihood Bayesian Bayesian
classical ratio u.p. a.p.
consistency - - - - 4+ + T
precision - - - + 4 +
universality - - - - - + 1
simplicity - - - ++ I+ T
variable transform. - ++ ++ - - - -
nuisance parameter - s _ + I+
error propagation - . + + +
combining data - - ++ + _
coverage + ++ - - - - - -
objectivity - - +4+ + _
discrete hypothesis - - + + +

(G. Zech, “Frequentist and Bayesian confidence intervals”, hep-ex/0+06023)

uniform prior

arbitrary prior
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Choice of the “best” approach
B, F, LR
It depends on the experimentor’s intention :
* is one Interested 1n the uncertainty of a measurement (B, LR)

* does one want to verify or reject a theory (F)

 does one want to estimate the parameter in addition to
determining an error interval (LR)
* does one want to combine measurements (LR)

“You see, a question has arisen, about which we cannot come to
an agreement, probably because we have read too many books”

(Bertold Brecht, “Leben des Galile1”)
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L. Lyons, “Bayes or Frequentism” ? CDF report (2002)

* It 1s not a question of which of the two approaches (Bayesian or
Frequentist) is correct, but rather the consumer should be aware
exactly what each method has to offer, and what are its limitations
and pitfalls.

* Because there are so many options in calculating ranges and even
more so for limits, 1t 1s crucial to state clearly what procedure was
used.

* It 1s useful to provide to the reader more information than just the

final results on the ranges or limits.
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Table 1: Comparison of Bayes and Frequentist philosophies

Method Bayes Frequentist
Probability Degree of belief Limit of frequency ratio
P(p)? Yes Anathema
Need for prior? Yes No
What is used? L)) flazp)

Only observed data

Also other possible data

Hi {_-: H E o

1t = random variable
iy, ty, fixed by this expt

jt = unknown but hxed
1y .y, = random variables

Nuisance parameters

Mareinalise (inteerate
[] X ]

Maximise wrt them

Prob of which data?

Only what vou observed

Also more extreme

Empty intervals?

Intervals always phyvsical

Can happen

Problem with ¢ = 07

Limits always phyvsical

Can give empty interval

Concept of coverage

Not seen as relevant
Achieves average coverage

Basic importance
Covers (or overcovers) for any pu

Need to define ensemble?

No

Yes

Decisions

Requires cost function

No. Needs prior and cost in.

L. Lyons, CDF report (2002)
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Methods not recommended

» multidimensional Neyman construction with simple projection

onto the space of physical parameters (strong overcoverage)

Reasonable methods

* Bayesian approach (Helene)

* Frequentist approaches using the profile LR as ordering rule
(Cranmer, Punzi)

« Approaches which use the pdf of the profile LR to calculate
confidence mntervals (MINUIT, Rolke)
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