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Calculation of Confidence Intervals

• Baye’s theorem
• The likelihood principle (LP)
• The likelihood ratio test

• Different kinds of intervals (ordering algorithms)

• Bayesian confidence intervals
• Frequentist (classical) confidence intervals 
• Likelihood-ratio (LR) intervals

• Treatment of nuisance parameters
• Comparison of different approaches

Wolfgang Wittek, July 2006
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Baye’s theorem
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B

A

Baye's theorem :
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2-dim. normalized
probability distribution :
Gauss (A; m=5, σ=2) ·

Poisson (B; A)
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The likelihood principle (LP)

One assumes that an observation x follows a given probability 
density f(x; A) with unknown parameter A.

The LP states : The information contained in an observation x0
with respect to the parameter A is summarized by the likelihood 
function L(A; x0) = f(x0; A). All what matters for the parameter 
inference is L(A; x0). Measurements different from x0 are 
irrelevant.

The LP relies on the strict validity of the probability density.
Therefore, methods based on the likelihood function often are 
very sensitive to unknown biases, backgrounds and losses.

The LP is not fully accepted by all statisticians. 
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Neyman-Pearson lemma
(see K.S. Cranmer, physics/0310108)

Given a certain measurement x, the likelihood ratio
LR(x) = L(x; H0) / L(x; H1)

is the most powerful variable or test statistic for discriminating between 
• a simple null hypothesis               (H0, background only)
• and another hypothesis                 (H1, signal plus background)
For a proof see J.Stuart, A.Ord and S.Arnold, “Kendall’s Advanced Theory of Statistics”, Vol 2A 
(6th Ed.) (Oxford University Press, New York, 1994)

If W is the acceptance region for H0 for a confidence level α, the 
probability for a Type I error is equal to

the probability for a Type II error is  
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The acceptance region W which minimizes the rate of Type II errors
(maximizes the power), mistaking the signal for a background 
fluctuation, rejecting H1 although H1 is true,

is given  by :

The constant kα is determined from L(x; H0) and the confidence level α :

Note : The LR is used as ordering quantity only. The probability
distribution of the LR is not used.
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α = confidence level
LR(x) = L(x;H0) / L(x;H1)

acceptance region for H0

is defined by
LR > kα = LR(xup) or

LR

H0

H1
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The likelihood ratio test
Given a certain measurement, calculate the likelihood to obtain this 
measurement assuming a certain hypothesis.
L1 maximum likelihood value for the hypothesis H1

L0 maximum likelihood value for the same hypothesis but with
additional constraints (H0, with k parameters less than H1)

The likelihood ratio   LR=L0/L1   is then always between 0 and 1.
If H0 is true, the log-likelihood ratio   Λ = -2 ln(LR) follows 
approximately  a  χ 2 distribution with k degrees of freedom.

The hypothesis H0 is rejected at the α-confidence level if
Λ is larger than the χ 2 value corresponding to the α-quantile
of the χ 2 distribution with k degrees of freedom.

Note : the probability distribution of the LR is used to calculate 
the acceptance region for H0.
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Require                                    (confidence level)

• central interval :

• symmetric interval :
• highest-probability interval :
• selective interval :  for example  LR(l) = LR(u), LR = likelihood ratio
• minimum-size interval :
• intervals for lower or upper limits :
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The different intervals are based on different ordering principles,
which define the order in which a region in x is added to the
interval (l,u), until                                .

In the different approaches different probabilities p(x) are used :

• Bayesian approach :         p(A) = g(A;a)

to calculate the confidence region of A, given a

• Frequentist approach :     p(a) = f(a; A)

to calculate the acceptance region of a, given A

where A is the parameter and a the measurement.

∫ =⋅
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Properties of different intervals

• central intervals  : - invariant against variable and parameter transformations
- restricted to the case with 1 variable and 1 parameter

• highest-probability intervals : - not invariant under variable transformations
- less “biased” than central intervals

• minimum-size intervals :  - not invariant under parameter transformations

• symmetric intervals :        - not invariant under parameter transformations

• selective intervals :    - invariant under transformations of variables and
parameters, independent of their dimensions

(see G. Zech, “Frequentist and Bayesian confidence intervals”,
hep-ex/0106023)
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Understanding of confidence interval (l,u)

If α is the confidence level      (68.27 %, 90 %,      95 %,     95.45 %,
99 %,      99.73 %, 99.9 %,  99.99 %,
99.9937 %, 99.999943 %) 

corresponding to  
(    1 σ,   1.64 σ,     1.96 σ,         2 σ,
2.58 σ,       3 σ,     3.29 σ,    3.89 σ,

4 σ,       5 σ)      central intervals

• the true value is contained in the interval (l,u) with a probability α
• if a large number of experiments is performed under identical
conditions the true value will be within (l,u)  in a fraction α of the

experiments

α
(1-α)/2(1-α)/2
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Bayesian approach

The method contains a probability function π(A) (prior distribution),
reflecting the experimenter’s subjective degree of belief about A
before the measurement is carried out.

Example :    π(A)  = const for A1 ≤ A ≤ A2;         π(A) = 0 otherwise

Problem :   π(A) depends on the metric of A
should dN/dA be const or dN/dy, where y = h(A)
if y = lnA → dN/dA = dN/dy · dy/dA = 1/A

π(A)   is appropriate to specify a prior knowledge about A,
it is less suitable to specify ignorance about A  
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Frequentist (classical) approach

A prior distribution π(A) does not appear in this method. 
All calculations are based on the probability distribution 
f(a; A) for a , given the true value A.
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Bayesian confidence intervals

f(a; A) probability to measure a, if the unknown parameter has
the value A

Example :

a =  measured number of signal events
A =  true average value of number of signal events

Baye’s theorem :                                                      (posterior prob. distr.)

assume π(A) = const →
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distribution of a, given A :                         distribution of A, given a :
f(a; A) = Poisson(a; A)
π(A) = const

given the measurement a,
determine the Bayesian 
confidence interval (l(a),u(a)) 
for A by the condition 

assuming a certain ordering
principle (central interval,
upper limit, …)
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The Bayesian limits (l(a),u(a)) for A depend on
• the measurement a
• the ordering principle

(order in which points are added to the confidence interval)
• the confidence level α
• the prior distribution π(A)

The limits (l(a),u(a))  define the “confidence belt” in the A-a plane.
Measurements different from a don’t appear in the calculation of (l(a),u(a)). 

Bayesian coverage :
One performs a large number of experiments, with a distribution of A
values according to π(A).  The experiments will have A values within
(l(a),u(a))  in a fraction α of all cases. 
Bayesian intervals have Bayesian coverage by construction.
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Frequentist confidence intervals

f(a; A) probability for measuring a if the unknown parameter
has the value A

For each value A define an acceptance interval Ra(A) = (a1(A), a2(A))  

of a by the condition                                               (α = confidence level)

The region between the lines a1(A) and a2(A), which may also be denoted 
by  A1(a) and A2(a), is called “confidence belt”. 
For a given measurement a define the confidence interval RA(a) of A as 
follows:     include in RA(a) all those A whose acceptance interval Ra(A) 

contains a RA(a) = (A1(a), A2(a)).

Neyman construction of confidence intervals   (see J. Neyman, 
Phil. Trans. Royal Soc. London, Series A, 236 (1937) 333)

2

1
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A

a2(A0)
a1(A0)

A2(a0)
A1(a0)

A0

a0 a

confidence 
belt

( a1(A0), a2(A0) )    acceptance interval of a, for A = A0

( A1(a0), A2(a0) )    confidence interval of A, if measurement is a0

For a given measurement a0 , A0 lies in confidence interval (A1(a0), A2(a0))
of A if and only if a0 lies in acceptance region (a1(A0), a2(A0)) of a .

P( A1(a0) < A <  A2(a0) )  =   P( a1(A0) < a <  a2(A0) ) =  α

Confidence belt
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A

alow(A0)
Aup(a0)

A0

a0 a

upper limits 
region

( a > alow(A0) )    acceptance interval of  a, for A = A0

( A < Aup(a0) )    confidence interval of A, if measurement is a0

For a given measurement a0 , A0 lies in confidence interval of A
( A < Aup(a0) ) if and only if a0 lies in acceptance region of a ( a > alow(A0) ) 

P(A0 < Aup(a0) )  = P(a0 > alow(A0) ) =  α

Upper limits region
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Advantages of a highest likelihood 
ratio (LR) interval as compared 
to a central interval :
• it provides a smooth transition from
an α-confidence interval to an 
α-confidence upper limit (??????)

• it often avoids unphysical or empty
intervals

• it is also invariant against
transformations of variables and
parameters  (independent of the
dimensions)

Different ordering principles in different Frequentist approaches :
• classical :  central, symmetric or highest probability intervals
• unified classical :    selective intervals, like highest LR

(G. Zech, “Frequentist and Bayesian confidence 
intervals”, hep-ex/0106023)

Fig. 5. Likelihood ratio ordering. The likelihood 
ratios are equal at the limits of the shaded region.
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Flip-flopping “problem”
“If the result x is less than 3, I will state an upper limit. Otherwise I will 
state a central confidence interval. This  policy leads to undercoverage.
The experimenter should decide before looking at the data.”

90 %  central
conf. interval

90 % u.l.

The “problem” is due to identifying
an α-c.l. upper limit with the upper
end of an α-c.l. central conf. interval.
This is wrong. There is no problem.

α
(1-α)/2(1-α)/2

(1+α)/2

F&C,  PR D57 (1998) 3873

undercoverage
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More general definition of acceptance interval

• define the acceptance interval Ra(A) of a by a test (χ2 test,   
likelihood test):   the hypothesis A is accepted if a is within Ra(A)

• then proceed as before: given a measurement a, accept those A in
the confidence interval RA(a) of A, for which the measurememt a is 
contained in the acceptance interval Ra(A)
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For each pair (A,B) determine the acceptance region Rxy(A,B) of 
(x,y), using some ordering algorithm

Given a measurement (x,y), the confidence region RAB (x,y) for  
(A,B)  is found as follows : include in RAB (x,y) all those pairs (A,B) 

for which (x,y) is contained in Rxy(A,B)

Newman construction in more than one dimension

Assume the measurements (x,y) to be distributed according to 
f(x,y;A,B), with parameters A and B , whose values are unknown
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W.A. Rolke and A.M. Lopez, NIM A458 (2001) 745

Confidence regions for (μ,b)

for different measurements (x,y),

with x ≈ Poisson(x; μ+b)

y ≈ Poisson(y; τb),

α =  90 %,   τ =  2

µ

b
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Frequentist coverage

If a large number of experiments is performed under identical conditions

(A=A0, B=B0) 

a confidence region RAB(x,y) of (A,B) is said to have exact coverage

if the pair of values (A0,B0) is contained in RAB(x,y) in a fraction α of all
experiments.

Frequentist confidence regions have Frequentist coverage by definition.
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Likelihood ratio intervals

f(a; A) probability to measure a, if the unknown parameter has
the value A

Define the likelihood function L(A; a) as      L(A; a) = f(a; A)
For a given measurement a, find Amax which maximizes L(A; a)
Define the LR interval (Alow, Aup) by the requirement

where   Δ= n2/2 for a confidence level of   n·σ
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(G. Zech, “Frequentist and Bayesian confidence intervals”, hep-ex/0106023)

Likelihood ratio intervals Bayesian interval

If L(A; a) = Gauss(a; A,σ), the LR intervals are identical to the
Bayesian confidence intervals, obtained with a uniform prior

A A

L(A;a) L(A;a)
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Example for the construction of a Likelihood ratio interval :

a number of signal events when true average is A (unknown)
b number of background events when true average is B (known)
One measures x = a+b. Assume a and b to be distributed like  

Poisson (a; A)  and   Poisson (b; B) respectively

The likelihood function is

get LR interval (Alow, Aup) for A by determining the A at which 
L(A; x) = maximum (= Lmax) and      L(Alow; x) / Lmax = exp(-1/2)

L(Aup; x)  / Lmax = exp(-1/2)

For x = 0

( )( ;  )  =  ( ;  )  =  exp( )
!

xBBL x Poisson x AA A
x

A B+
+ ⋅ − −

 ( ;  0)    exp( ) ,    independent of AL x A B→ = ≈ −
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R.D. Cousins (PHYSTAT05)

Comparison of Bayesian, Frequentist and LR intervals

68 % confidence intervals
for the mean A
f(x; A) = Poisson(x; A)
with the measurement x = 3
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Comparison of Frequentist and LR approach

Frequentist approach :
considers f(x; θ1) and
f(x; θ2) over a wide 
range of x ; x0 is within
acceptance region of θ2

LR approach :
considers f(x; θ1)/f(x; θ2)
at x = x0 only  ;
θ1 is accepted

x = x0

f(x; θ)
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An interesting special example

• Fewer events (n) in signal region than expected from background

Helene : for n = 0, upper limit of A = 2.3 (independent of B)
F&C    : for n = 0, “upper limit” of A decreases as B increases

for any n, “upper limit” tends to  1  as  B goes to  ∞

Suggestion by F&C : 
if “upper limit” is less than “sensitivity” give both.
sensitivity(B) = average “upper limit” in an ensemble of 

experiments with A = 0;
This is an average over all possible 
measurements with A=0 and B.
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G.J.Feldman and R.D.Cousins,
PR D57 (1998) 3873

O.Helene, 
NIM 212 (1983) 319

0

90 % c.l. upper limit

upper end of  90 % conf. interval
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n ≈ Poisson(n; μ+b)     measure n=0

90 % upper limits

c: classical
f : unified classical
b : Bayesian

L(μ;n=0) ≈ exp(-μ)LR
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End of part 1
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Nuisance parameters
• parameters whose values have to be known for calculating a
result but which carry no information about the result and 

• whose uncertainties affect the uncertainty of the final result 

Examples of nuisance parameters :
• background under the signal
• efficiency for measuring the signal (acceptance, Aeff)

Given the measurements x, y and z of
• the no. of events in the signal region  (x)
• the no. of events in the background region (y)
• the no. of signal events surviving the analysis cuts (MC)  (z)

What are the limits (l,u) for the true average number A of signal 
events ?
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Treatment of nuisance parameters in the 
Bayesian approach

1) B is exactly known (see O.Helene, NIM 212 (1983) 319) :
a number of signal events when true average is A (unknown)
b number of background events when true average is B (known)
One measures x = a+b. Assume x to be distributed like  
f(x; A,B) = Poisson (x; A+B),  where A is unknown and B is known

0
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                       (for )
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Given the measurement x and the known true number of background 
events B, determine the Bayesian confidence interval (l(x,B), u(x,B)) 

for A by the condition 

assuming a certain ordering principle (central interval, upper limit, …)

As long as the nuisance parameter is exactly known (error = 0)
no special procedure is needed for its treatment.

( , )

0
( , )

( ; , )     
B

B

u x

l x

g x dB AA α=∫
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a number of signal events when the true average is A (unknown)
b number of background events in the signal region when the

true average is B (unknown)
y number of background events in the background region when the

true average is τ·B ;   τ =  (size of bg region) / (size of signal region)

One measures x = a+b and y. Assume x and y to be distributed
like

where both A and B are unknown  

( , ; , ) ( ) ( )
  ( ;  , )       

( , ; , ) ( ) ( )

with  the prior distributions ( ) and ( )   (Baye's theorem)
  

B

BA

f x y B dB
g x y

f x y A B A dB dA

A A
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π π

π π

π π

⋅ ⋅ ⋅
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∫

∫ ∫
%
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( , ;  , )    ( ;  ) ( ;  )B Bf x y Poisson x Poisson yA BA τ= + ⋅ ⋅

2) B is not exactly known (see O.Helene, NIM 212 (1983) 319) :
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Given the measurements x and y, determine the Bayesian confidence 
interval (l(x,y), u(x,y)) for A by the condition 

assuming a certain ordering principle (central interval, upper limit, …)

( , )

( , )

( ; , )     
u x y

l x y

g x y dAA α=∫
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Treatment of nuisance parameters in the 
Frequentist approach

• The average value B of the background is exactly known

• The average value B of the background is not exactly known
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(see G.J. Feldman and R.D. Cousins, PR D57 (1998) 3873) 
a number of signal events when the true average is A (unknown)
b number of background events when the true average is B (known)

One measures x = a+b. Assume x to be distributed like  
f(x; A,B) = Poisson (x; A+B) ,  where A is unknown and B is known

For each value A define an acceptance interval Rx(A) = (x1(A), x2(A)) of x by 

the condition                                                  (α = confidence level)

using as ordering quantity the likelihood ratio LR = f(x; A,B) / f(x; Abest,B),
where Abest is that (physically allowed) value of A which maximizes f(x;A,B)

The average value B of the background 
is exactly known

2

1

( )

( )

( ; )     ,
A

A

x

x

Ax dxBf α⋅ =∫
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Determine the confidence interval RA(x) of A in the usual way: 
RA(x) contains all those A whose acceptance region Rx(A) contains
the measurement x

B = 3, α = 90 %

G.J.Feldman and R.D. Cousins,
PR D57 (1998) 3873

A

x

the ordering quantity is the 
likelihood ratio 

LR = f(x; A,B) / f(x; Abest,B), 

As long as the nuisance parameter is 
exactly known (error = 0)
no special procedure is needed for its 
treatment.
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Critical remarks to the paper of F & C

• The flip-flopping problem : “In the classical approach you may
decide to quote an upper limit or a confidence interval, after having 
had a look at the data. This policy leads to undercoverage, in 
general.”

This statement is wrong : coverage has nothing to do with the above  
decision. The experimenter can quote an upper limit or a confidence 
interval, or both, without violating coverage. 

In F&C’s paper the apparent flip-flopping problem arises from the 
fact that they consider as altenatives the upper end of a 90% c.l. 
central interval with a 90% c.l. upper limit. The problem would not 
arise if they considered as alternatives the  upper end of a 90% c.l. 
central interval with a 95% c.l. upper limit.
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• Unified approach : “Using the LR as ordering quantity one obtains  
intervals which automatically change from two-sided intervals to 
upper limits. This eliminates undercoverage caused by basing this 
choice on the data (flip-flopping).”

It is true that the upper end of any confidence interval can be   
understood as an upper limit, however, at different confidence levels, 
in general. Even in the unified approach the acceptance intervals are 
two-sided, implying that the upper end of the confidence interval is an 
upper limit at a different confidence level than the confidence 
interval. Even if the confidence interval is one-sided (because its 
lower end coincides with the lowest physically allowed value, for 
example) the upper end doesn’t become an upper limit at the same c.l. 
as the confidence interval. 
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The average value B of the background is 
not exactly known

I. Neyman construction in more dimensions + projection 

II. Profile LR used as ordering quantity  (Cranmer, Punzi);
Neyman construction in 2 dimensions (physics p. and nuisance p.)

III.  Profile LR used to construct confidence interval (Rolke & Lopez);
Neyman construction in 1 dimension (physics parameter only)

IV.  Mixed Frequentist-Bayesian approach   (Cousins & Highland)
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I. Neyman construction in more dimensions + projection

(see G. Punzi, “Including systematic uncertainties in Confidence Limits”, CDF report (2003)) 

x number of signal events when the true average is A (unknown)
y number of background events in the signal region
b number of background events when the true average is B (unknown)

one measures a = x+y and b ;
assume (a,b) to be distributed like  f(a,b; A,B) 

For each point (A,B) define an acceptance region Rab(A,B) of (a,b) by 

the condition                                                   (α = confidence level)

using some ordering algorithm.

( , ; )    ,  
abR

f a b da dbA B α⋅ =∫
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Then proceed as usual to find, for a given measurement (a,b), 
the confidence region RAB(a,b) of (A,B) :  include in RAB(a,b) all
those (A,B) for which (a,b) is within Rab(A,B).

In order to get the limits for the physical parameter A, one needs to 
“project” the confidence region in the (A,B) plane onto the A axis.



50(G. Punzi, “Including systematic uncertainties in Confidence Limits”, CDF report (2003)) 

“Projection” of the confidence region in the (μ,ν) plane onto the μ axis :
the confidence region in (μ,ν) has exact coverage, by construction;
by the extension to the shaded area (blue) the coverage is increased

68 % confidence region
for a given measurement

µ is physical parameter
ν is nuisance parameter
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Problems with this procedure :

• the projection often leads to large overcoverage
• the procedure is sensitive to the choice of the ordering algorithm
• often the limits obtained with small systematics are quite different
from the ones obtained in the absence of that systematics

• the calculations can be complex and CPU-time consuming
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II. Profile Likelihood ratio used as ordering quantity

The profile LR is defined as
where       maximizes f(a,b; A,B) with fixed a,b,A
and            maximize f(a,b; A,B) with fixed a,b

l(a,b; A) is a good test statistic for the hypothesis A.

Do the Neyman construction in 2 dimensions (A,B). Use profile LR
(which is independent of B)   as ordering quantity, for each value of B.   
To be used together with the pdf f(a,b; A,B) (which depends on B)
for constructing the acceptance regions  Rab(A,B) :

( M. Kendall and A. Stuart, “The Advanced Theory of Statistics” (1961),
K.S. Cranmer,  PHYSTAT2003,  G. Punzi,  PHYSTAT05 ) 

ˆ̂( , ;  , )( , , )     ˆ ˆ( , ;  , )
f a b Bl a b
f a b A B

AA = B̂̂
ˆ ˆ,A B

α  ),;,( =∫ ⋅
abR

dbdaBAbaf{ }  , );,(   |  ,      ,( B)(A lAbalbaB)AR αab >=
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Note : acceptance regions for different B, for the same A, will only differ
in lα(A,B) , and will therefore be included in one another.

Aim : by using an ordering quantity which is independent of B construct
acceptance regions Rab(A,B) which depend only little on B.

is independent of B
if lα(A,B) is independent of B

Modify the above definition of Rab(A,B) by excluding those b which
are extremely unlikely:  f(a,b; A,B) < ε

{ }  , );,(   |  ,      ,( B)(A lAbalbaB)AR αab >=
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With   f0(x) = f(x;μ) / f(x;μbest),
this ordering principle is
approximately equivalent to an
ordering based on the profile LR

Example :
f(x,e; μ,ε,b)= Poisson(x; εμ+b)

· Gauss(e; ε,σ)
coverage is close to α = 90 %

Special ordering function
G.Punzi, physics/0511202,
PHYSTAT05
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III.  Profile Likelihood ratio used to construct
confidence intervals

(G. Feldman, Fermilab workshop 2000,  W.A.Rolke et al., NIM A458 (2001) 745)

Eliminate nuisance parameter by constructing the acceptance region
of A for the optimum value of the nuisance parameter.

a number of signal events when the true average is A (unknown)
b number of background events in the signal region when the

true average is B (unknown)
y number of background events in the background region when the

true average is τ·B ;   τ =  (size of bg region) / (size of signal region)
One measures x = a+b and y. Assume x and y to be distributed
like 
where both A and B are unknown. 

( , ;  , )    ( ;  ) ( ;  )B Bf x y Poisson x Poisson yA BA τ= + ⋅ ⋅
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• Define the likelihood ratio

Λ(A; x,y) is a good test statistic for the hypothesis A. At fixed A, 
i.e. if A is the true value of the parameter, L(A; x,y) = -2 ln Λ(A; x,y) is
approximately χ 2-distributed  with 

no.of degrees of freedom  =  npartot-nparfixed (x >> y/τ)  

• Define acceptance regions Rxy(A) using the distribution of

Λ(A; x,y) :  Rxy(A) = { x,y;  |  L(A; x,y) <  χ2
cut(α) } 

Case x >> y/τ
(no. of observed events in signal region >> average expected background) 

,

ˆ( , ; , )                                                 ( ; , )    
max( ( , ; , ))

ˆ( ; , ) is that  which maximizes ( , ; , ),   at fi
profile likelihood function

xed , ,
( )

A B

f x y Bx y
f x y A B

B x y B f x y

AA

A A x yAB

Λ =
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χ 2 = 0

χ 2 = 2.706  =  χ 2
cut(α)

(x,y) = (6,2),  τ = 2,  α = 90 %

→ 6 = x > y/τ = 1

-2 ln Λ(A; x,y)  vs. A

A

Confidence interval

for A

• Given a measurement (x,y), accept all those A in the confidence
interval RA(x,y) of A for which (x,y) is acceptable, i.e for which
L(A; x,y) <  χ 2

cut(α).

W.A. Rolke and A.M. Lopez, NIM A458 (2001) 745
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• Since χ 2
cut(α) is independent of A only the actual measurement

(x,y) enters. The method thus obeys the likelihood principle.

• The acceptance intervals are determined using the pdf of L(A; x,y) at 
fixed A, not the pdf of L(A; x,y) at fixed (x,y). Thus the method is a 
Frequentist method.

• Although the construction of the acceptance intervals is done
effectively in 1 dimension (the physics parameter), coverage is
tested in 2 dimensions (physics + nuisance parameter). The method
yields confidence intervals with good coverage, throughout the
parameter space, even at its boundaries.

In contrast to Cranmer, Punzi Λ(A; x,y) is not used as ordering
quantity but rather as a test statistic to define the acceptance 
regions Rxy(A) in (x,y) and the confidence interval RA(x,y) of A.

The same method  is also used in the minimization program
package MINUIT (F. James).
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Case x  ≤ y/τ
(no. of observed events in signal region ≤ average expected background)

• Determine for each (A,B) the acceptance region Rxy(A,B) of (x,y)

• Given the measurement (x,y), define the confidence region

RAB(x,y) of (A,B)

• Determine the limits of A as the intersection points of the profile

likelihood curve with the contour of RAB(x,y))(ˆ AB
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W.A. Rolke and A.M. Lopez, NIM A458 (2001) 745

τ = 2,  α = 90 %

(x,y) = (0,1)  → 0= x<y/τ = 0.5

(x,y) = (1,3)  → 1= x<y/τ = 1.5

AA

B

profile likelihood function

( it maximizes f(x,y; A,B) )

ˆ( ; , )AB x y

confidence regions of A



61

IV.  Mixed Frequentist-Bayesian approach
(R.D. Cousins and V.L. Highland, NIM A320 (1992) 331, 
G.C. Hill, Comments on “Including systematic uncertainties in confidence interval 
construction for Poisson statistics”, 
PR D67 (2003) 118101; J. Conrad et al., PR D67 (2003) 012002 )

f(x; A) = Poisson(x; A)
Assume that there is an additional systematic normalization error 
in the order σs. Take this into account by replacing   f(x; A) by

Use this probability distribution for constructing the acceptance 
interval Ra(A), assuming a certain ordering quantity O :
F&C : O1 = f(x; A,B) / f(x; Abest,B)     where B is known and fixed
here :    O2 = f(x; A, σs) / f(x; Abest, σs)   yields unsatisfactory results
better :  O3 = f(x; A, σs) / f(x; Abest)

( ; , )      ( ;  1 )s sf x f(x; s ) Gauss s sA A , dσ σ= ⋅ ⋅ ⋅∫
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( ; , )        1  )

ordering quantity   ,      90%
)best

s s

s

f x Poisson(x; s ) Gauss(s; , ds

f(x; , )LR

A A

A
Poisson(x

σ
; A

α

σ σ= ⋅ ⋅ ⋅

= =

∫

U.Schwanke & 

T.Lohse (2004)

best LR confidence
intervals for A :
σs = 0
σs = 20 %

A
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End of part 2
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Critisism of Bayesian approach

• prior distribution represents a subjective belief about A;
the results is therefore not an objective answer to the problem

• the use of a uniform prior distribution (to express ignorance
about A) is problematic (dependence on metric)

• Bayesian confidence intervals have bad Frequentist coverage
(over and/or undercoverage)

Main advantages :
• easy treatment of nuisance parameters
• Bayesian approach obeys the likelihood principle
(only the actual measurements enter in the calculations)
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Critisism of Frequentist (classical) approach
• elimination of nuisance parameters is problematic 
• the likelihood principle is violated; this means that some

available information is ignored 
• results are sometimes counterintuitive :

- with 0 observed events upper limit decreases with     
increasing average background level

- adding additional information causes the limits to widen
dramatically  (G. Punzi, Durham 2002)

Main advantages :
• confidence intervals have exact Frequentist coverage
(except with discrete measurements)

• invariance against variable and parameter transformations,
independent of the dimensions (in the unified classical approach)
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Critisism of LR approach

• elimination of nuisance parameters is problematic 

• if maximum of LR is outside (or close to the border of) the
physical region errors become unrealistic

• simple LR intervals are not confidence intervals

Main advantages :
• invariance against variable and parameter transformations
• combination of measurements (without loss of information) is 
straightforward : add their log-likelihood functions

• the LR approach is able to handle a discrete sample space 
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Criteria used when comparing different approaches

• Consistency : Support of a hypothesis must not be affected by
information judged intuitively to be irrelevant (example : Poisson
case with expected average background and 0 events observed).

• Precision : The interval should represent a measure for the relative
precision of different experimental results; the interval should serve
as a check of the compatibility of the measurement with a theoretical
prediction.

• Universality : The method should cope with all special cases, such 
as elimination of nuisance parameters, discrete and continuous
measurements and parameters, … .

• Objectivity : The results should not depend on the experimenter’s
subjective believe.
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• Coverage : Good (Frequentist) coverage means that the true value is
within the interval with high probability. It does not mean that any
parameter within the interval is true with high probability.

• Invariance against transformations of measurements and parameters :
The intervals should be the same using the original variables or the
transformed ones.

• Nuisance parameters : Elimination of nuisance parameters should
be possible.

• Combining data : The combination of confidence intervals should
be possible.

• Likelihood principle : The intervals should not violate this principle.

• Bias : the expectation value of the estimator of a parameter should
be equal to the parameter.
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• Error propagation : requires not only an error interval but also
a parameter estimate

• The limits given should effectively convey the information

content of the experiment
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(G. Zech, “Frequentist and Bayesian confidence intervals”, hep-ex/0106023)

Comparison of different approaches

uniform prior       arbitrary prior

classical        ratio
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Choice of the “best” approach
B, F, LR

It depends on the experimentor’s intention :
• is one interested in the uncertainty of a measurement (B, LR)
• does one want to verify or reject a theory  (F)
• does one want to estimate the parameter in addition to 
determining an error interval (LR)

• does one want to combine measurements (LR)

“You see, a question has arisen, about which we cannot come to 
an agreement, probably because we have read too many books”

(Bertold Brecht, “Leben des Galilei”)
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L. Lyons, “Bayes or Frequentism” ? CDF report (2002)

• It is not a question of which of the two approaches (Bayesian or
Frequentist) is correct, but rather the consumer should be aware 
exactly what each method has to offer, and what are its limitations 
and pitfalls.

• Because there are so many options in calculating ranges and even 
more so for limits, it is crucial to state clearly what procedure was
used.

• It is useful to provide to the reader more information than just the
final results on the ranges or limits.



73L. Lyons, CDF report (2002)
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Methods not recommended

Reasonable methods 

• multidimensional Neyman construction with simple projection
onto the space of physical parameters (strong overcoverage)

• Bayesian approach (Helene)
• Frequentist approaches using the profile LR as ordering rule

(Cranmer, Punzi)
• Approaches which use the pdf of the profile LR to calculate

confidence intervals (MINUIT, Rolke)
• …………


