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The Unfolding Program in the Standard Analysis ChainPart 1. How To Use ItE. Aliu, W. Wittekaliu�ifae.es, wittek�mppmu.mpg.de10th April 2006(Revised version)AbstratIn the Standard Analysis Chain of MAGIC the last step, after the ux step, is theunfolding step. In the unfolding step the distribution of exess events (gammas) in theestimated energy, as determined in the ux step, is onverted into a distribution of exessevents in the true energy, from whih absolute orreted gamma uxes are omputed. Inaddition, the unfolding step inludes an iteration over an idealized ux shape, in orderto make sure that the ux shape used to alulate average olletion areas and migrationmatries is in good agreement with the gamma ux obtained after the unfolding.This note is divided into two parts. The present one is about the general unfoldingprogram implemented in MARS, whih inludes the unfolding algorithms explained in [1℄.It desribes the lasses, options and output plots and explains how the program is to beused. A seond note deals with the performane of the unfolding program, whih wasstudied by means of simulated data and of real data.
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1 Introdution 31 IntrodutionMeasurements of a physial quantity are often systematially distorted due to the fat that the de-tetors are not ideal. These distortions are due to limited aeptane, to biases in the measurementsand espeially to the �nite resolution of the detetors. Limited aeptane is referred to the fatthat the probability of observing an event is less than one, whih will depend on the trigger and theuts applied. The seond e�et, the biases in the measurements, transforms the measurements, whihmeans that we are not measuring exatly the quantity we want. And �nally, the �nite resolution ofthe apparatus produes a smearing in the measurement. The e�et of limited aeptane, whih isusually known as a funtion of the true quantity, an be treated separately, and the atual unfoldingdeals only with the biases and the �nite resolution. The limited aeptane is taken into aount whenonverting the unfolded distribution of exess events (gammas) into absolute gamma uxes.The distortions due to biases and �nite resolution an be written in the formY (y) = Z M(y; x)S(x)dx or Yi =Xj MijSj or Y =M � S (1)whereM desribes the detetor response (determined from Monte Carlo), Y is the expeted measuredand S the true distribution, the one without distortions.A standard task of experiments with Cherenkov telesopes is to determine the energy spetrum ofgammas. This is done by measuring the number of gammas in bins of the measured (estimated)energy. The aim is to derive the number of gammas in bins of the true energy, whih one would obtainwith an ideal detetor.There are various approahes to solve this problem. One approah onsists in a deonvolution of thedi�erent e�ets a�eting the measurements. This is done by essentially inverting a matrix representingthe detetor response. This proedure, alled Deonvolution or Unfolding, often leads to unsat-isfatory results: The matrix inversion gives a solution whih is in a sense tehnially orret, butwhih often is totally useless due to the large orrelations between adjaent bins, whih imply largeutuations of their ontents. This fat is the basis of the unfolding methods with regularization.In these methods one onsiders two terms: one term, �20, expressing the degree of agreement betweenthe predition M � S and the measurement Y , and another term , Reg, whih is a funtion of S ex-pressing the smoothness of the distribution. The di�erent unfolding methods di�er by the hoie ofthe regularization term Reg. A solution for S is obtained by minimizing the expression�2 = w2 � �20 + Reg (2)for a �xed weight w, also alled regularization parameter. Very large values of w, orrespondingto an unfolding without regularization, often produe noisy unfolded distributions that �t the dataperfetly. Moderate values of w will result in smoother distributions, although they will show smalldeviations from the measurements, and very small w will overemphasize the regularization, leading tolarger deviations from the measurements. So, the proper hoie of the weight is very important. Someriteria for hoosing the \best" weight will be disussed later in this note.Another approah onsists in determining the parameters of an assumed parametrization of the truedistribution and to hek how well this parametrization is onsistent with the experimental distribu-tion. This is alled Forward Unfolding. The basi di�erene between this and the previous methodsis that in the Forward Unfolding an expliit hypothesis is made on the true distribution, involvingonly a few free parameters. Moreover, no expliit regularization is done in the Forward Unfolding.



2 The unfolding program 42 The unfolding programAt present an unfolding an be performed by running the maro CombUnfold.C. In the maroobjets of the lassesMCombineDataForUnfolding andMCallUnfold are reated and member funtionsof them are alled. The maro also ontains the iteration loop for the ux spetrum. The maro isbeing onverted into an exeutable.2.1 The lass MCombineDataForUnfoldingWith the lassMCombineDataForUnfolding the input data, produed in the ux step of the Stan-dard Analysis, are read in. The input data onsist of the distribution Y to be unfolded, the migrationmatrix M , the e�etive olletion area A and the e�etive observation time T . For the atual unfold-ing only Y and M are needed. However, also A and T are provided in order to onvert the unfoldeddistribution into an absolute ux spetrum. A and T are also neessary for the Forward unfolding.For a given soure there may be more than 1 set of input data, orresponding to di�erent onditionsof data taking (ON/OFF, wobble, low/high zenith angles, moon/no moon data, ...). These data willbe ombined before they are further proessed by the lasses MCallUnfold anf MUnfold. The formulasused when ombining the di�erent data sets an be found in [1℄.The lasss is prepared to be alled in an iteration loop, in whih the ux shape is iterated, whih isused to realulate the e�etive olletion area and the migration matrix.The member funtionReadEnv() reads the steering �le ombunfold.r, in whih all options and param-eters are set (see Setion 5).CombineData() steers the ombination of di�erent data samples. It alls GetInputData(), CombineAt-FixedTheta(), CombineThetaBins() and WriteCombinedData().GetInputData() reads the data from the input �les, spei�ed in the ombunfold.r �le, and realulatesthe e�etive olletion area (RealAe�()) and the migration matrix (RealMigMatrix()) using theurrent ux shape (fSpetrum).CombineAtFixedTheta() ombines the data of a seleted � bin, as de�ned in the ombunfold.r �le.CombineThetaBins() ombines the data of all � bins.WriteCombinedData() writes the ombined data onto a �le, whose name is de�ned in the ombunfold.r�le. This �le an be read by MCallUnfold.MCombineDataForUnfolding also produes 2 sets of plots. On set shows the input data and theombined data, for eah iteration step separately. Another set displays the ux shapes used in thedi�erent iteration steps and ompares the ombined data of the di�erent iteration steps (see Setion6).



2.2 The lasses MCallUnfold and MUnfold 52.2 The lasses MCallUnfold and MUnfoldFor applying the unfolding two C++ lasses MCallUnfold.[h,℄ and MUnfold.[h,℄ are needed.In MCallUnfold the unfolding is prepared whereas the atual unfolding is done in MUnfold.Detailed explanations of all the formulas implemented in MUnfold are given in [1℄. The struture ofMUnfold is very exible and allows the user to add his own ode, both new options and new unfoldingalgorithms. In the onstrutor the input data is transformed to the format of root matries (TMatrix),in whih the unfolding program internally works. The di�erent unfolding parameters and options areset in the steering �le ombunfold.r. The options and parameters are explained in Setion 5.For eah of the unfolding methods, exept the Forward Unfolding, the unfolding is performed for 45di�erent values of the regularization parameter (weight or iteration number). The alulations inludethe storage of the values of all quantities needed for judging the result for a given weight or iterationstep. After the loop over the 45 weights, the funtion SeletBestWeight() is alled whih selets the\best" weight aording to some riteria (see FlagCriterion in Setion 5). A �nal unfolding is doneusing the seleted weight to produe the �nal unfolded distribution.As the Forward Unfolding doesn't involve a weight it is performed only one. The method yields theparameters of the assumed parametrization of the true energy spetrum. Using these parameters akind of \unfolded" distribution is alulated, whih is then transformed into an absolute ux spetrum,like it is done for the other unfolding methods. Fitting this ux by the same funtion as used in theForward unfolding should yield a �2 of 0.0, demonstrating the onsisteny of the alulations in theForward unfolding and in the ux alulation.Almost all the information involved in the unfolding, suh as the input data, the quantities usedto judge the quality of the unfolding, the unfolded distribution and the resulting ux spetrum aredumped into histograms in a method in harge of drawing suh plots, whih results in the output ofthe unfolding pakage.The program is very fast, making life easy when playing with the large number of options to studythe performane of the unfolding. The output plots provide all the information neessary to judgewhether the result is meaningful, as will be disussed later in this setion.2.3 Calling the Unfolding programThe all to the unfolding program is performed with the lass MCallUnfold :MCallUnfold *allunfold = new MCallUnfold();allunfold ! InitializeUnfold();allunfold ! SteerUnfold();The member funtion InitializeUnfold() alls ReadEnv(), PrepareInput(), ProposeRanges() and Chek-Input().ReadEnv() reads the steering �le ombunfold.r, in whih all options and parameters are set.PrepareInput() reads the input �le, whose name is given in the ombunfold.r �le, and stores varioushistograms, whih ontain the distribution to be unfolded, the migration matrix, the e�etive olle-tion areas and the e�etive observation time.



2.4 Steering the unfolding 6On the basis of these histograms, ProposeRanges() determines the ranges in the estimated (Eest) andtrue quantity (Etrue), whih may be used in the unfolding. The �nal hoie of the ranges dependson the ags RangeAutoSeletA, RangeAutoSeletB, nminA, nmaxA, nminB and nmaxB, set in theombunfold.r �le.ChekInput() heks the validity and onsisteny of the options and parameters set in the ombun-fold.r �le.2.4 Steering the unfoldingThe atual unfolding is performed by the method SteerUnfold() whih alls the methods of the un-folding pakage MUnfold.[h,℄, arranged aording to the tasks they perform in the unfolding. Themost important methods are :� MUnfold() : The distribution to be unfolded, its ovariane matrix and the migration matrixare passed to MUnfold as arguments of the onstrutor.� Setter funtions : Options and parameters for the unfolding, whih were read from the ombun-fold.r �le, are transmitted to MUnfold by various Setter funtions.� SetAeptane() : This funtion transfers to MUnfold the aeptane, de�ned as the fration ofthe migration matrix ontained in the seleted range of the estimated quantity. There is oneaeptane value for eah bin of the true quantity.� SmoothMigrationMatrix() : If FlagSmoothing is set to 1 in the ombunfold.r �le this memberfuntion is alled to smooth the migration matrix. Attention : the funtion is not yet in its �nalform and should not be used.� De�nition of the prior distribution : Depending on the value of FlagPrior in the ombunfold.r�le di�erent funtions are alled to de�ne the prior distribution.� PreventFitting() : Changes the prior distribution to be onsistent with the seleted bins in theestimated quantity and with the migration matrix.� CalulateG() : Calulates Gram's matrix G = M �MT , its eigen values and vetors, to be usedin the iterative unfolding methods.� CalulateGW() : Calulates the matrix GW = MT �K�1 �M , its eigen values and vetors, tobe used in the iterative unfolding methods. K is the ovariane matrix of the distribution to beunfolded.� Do the unfolding : Depending on the value of FlagUnfold in the ombunfold.r �le the orre-sponding unfolding method is alled. After this step the unfolded distribution is stored in fVb,with the ovariane matrix fVbov.� CorretAeptane() : Correts the unfolded distribution for the losses due to the seletionof bins in the estimated quantity. The resulting orreted unfolded distribution is stored infVbCorr, with the ovariane matrix fVbCorrov.



2.5 The lasses MCorrelatedFit and MCalXvalues 7� DrawPlots() : Produes the 3 sets of plots : input, iter, results. See Setion 6 for further details.Further operations in SteerUnfold() are :� A all to MCallUnfold::CalulateFluxes(), whih onverts the unfolded distribution into absolutegamma uxes.� A all to MCallUnfold::DrawOrigPlots(), whih produes a set of plots (orig) in the originalbinnings, before the seletion of ranges. See Setion 6 for further details. The gamma ux is�tted by a funtion, ignoring the orrelations between the bins.� A all to MCallUnfold::JudgeUnfolding(). It heks the onditions and results of the unfolding,giving some reommendations or warnings.� Calls to the lassMCorrelatedFit. MCorrelatedFit performs a �t to the gamma ux (�(E)),takinginto aount all orrelations. The lass also produes plots of �(E) and of E2 ��(E) (see Setion6).2.5 The lasses MCorrelatedFit and MCalXvaluesThe lass MCorrelatedFit is independent of the lasses MCallUnfold and MUnfold and an thus beused also outside of these lasses. It performs a �t of a funtion to data points, taking all orrelationsbetween the data points into aount. For alulating the x positions at whih the data points are tobe plotted the lass MCalXvalues is alled.The input to MCorrelatedFit is de�ned via the funtions :� De�neInput() The data points Y , the ovariane matrix K of Y , the overall relative uner-tainty r of Y , the lower bin edges and other quantities are passed to the lass in the argumentlist.� SetFuntion() Details about the funtion to be �tted to the data points are given as argumentsof SetFuntion().The atual �t is performed by the all FitFuntion(). The results of the �t are drawn by DrawFitRe-sults(), and printed by PrintFitResults().The results of the �t onsists of :� the �tted values of the parameters of the funtion,� the ovariane matrix of the �tted parameters.� a plot displaying the data points and their errors, the �2, the number of degrees of freedom andthe �2-probabilty of the �t and a graph of the �tted funtion,� the �2 ontributions for eah data point.Often data points are given in ertain bins of a variable, and the data points have the meaning of theaverage of some quantity in this bin. In the ase of MAGIC the data points are gamma uxes in bins



3 The format of the input �les for the unfolding program 8of the true energy (E), and the gamma uxes �i are to be understood as the average gamma uxesin the bins i : �i = 1ElowEdgei+1 �ElowEdgei � Z ElowEdgei+1ElowEdgei �(E) dE (3)When drawing the gamma uxes the question arises at whih Ei they should be plotted. If the gammauxes are desribed by a funtion f(E) a possible hoie of Ei is that energy at whih f(Ei) agreeswith the average of f(E) in bin i :f(Ei) = 1ElowEdgei+1 �ElowEdgei � Z ElowEdgei+1ElowEdgei f(E) dE (4)The lass MCalXvalues alulates for a given funtion f(E) and for a given binning ElowEdgeithe values Ei. MCalXvalues also omputes the orresponding Ei for the funtion g(E) = E2 � f(E): g(Ei) = 1ElowEdgei+1 �ElowEdgei � Z ElowEdgei+1ElowEdgei g(E) dE (5)The ratio of the averages of f(E) and g(E) in eah bin of E is given by fatorE2i = g(Ei)=f(Ei).This fator is used to alultate from the ux measurements �i the orresponding data points forE2 � �i : E2 � �i = fatorE2i � �i (6)3 The format of the input files for the unfolding programIn the following a list is given of the objets ontained in eah of the input �les for the unfoldingprogram. Also the member funtions of the respetive lasses, used in the unfolding program, arelisted.The input �les are read by the member funtions GetDimensions(), GetInputData() and BookCom-binedHistograms() of the lass MCombineDataForUnfolding.� The energy spetrumThe energy spetrum used in the ux maro when averaging the e�etive olletion area andthe migration matrix :TF1 *fSpetrum; name = "Spetrum"� The e�etive olletion areaMHMCollextionArea *ollarealass; name = "MHMColletionAreaEtrue"Member funtions :- Cal(); to realulate Ae� in oarse bins using the urrent energy spetrum.- GetHistCoarse(); to get Ae� in oarse bins of Etrue and Theta.- Get Hist(); to get Ae� in �ne bins of Etrue and Theta.



4 The format of the �le ontaining the ombined input data 9� The migration matrixMHMEnergyMigration *miglass; name = "MHMEnergyMigration"Member funtions :- SetHistCol(); to set Ae� to be used in Cal()- SetSpetrum(); to set the energy spetrum to be used in Cal().- Cal(); to realulate the migration matrix in oarse bins using the urrent energy spetrumand the urrent Ae�.- GetHistMigCoarse(); to get the migration matrix in oarse bins.� The e�etive observation timeMHE�etiveOnTime e�ontimelass; name = "MHE�etiveOnTime"Member funtions :- GetTimeInCoarseZaBin(); to get Te� for the spei�ed Theta bin.� The distribution to be unfoldedMHExessEnergyTheta *exesslass; name = "MHExessEnergyTheta"Member funtions :- GetHist(); to get the distribution to be unfolded.4 The format of the file ontaining the ombined input dataThe data whih were ombined by the lass MCombineDataForUnfolding are written by the memberfuntion WriteCombinedData() onto a �le, whih is then read in by the lass MCallUnfold.This �le ontains the objets- TH1D *fExessEnergy : distriburtion to be unfolded (no.of exess events vs. Eest)- TH2D *fMigrMatrix : migration matrix (vs. Eest and Etrue)- TH1D *fColArea : e�etive olletion area (Ae� vs. Etrue)- TH1D *fE�OnTime : e�etive observation time (Te� vs. sample number)5 Options and parameters for the unfoldingThe options and parameters for the unfolding have to be set in the �le ombunfold.r, whih is readby MCombineDataForUnfolding::ReadEnv() and by ReadEnv() in MCallUnfold::InitializeUnfold(). Inthe ombunfold.r �le eah option or parameter is reognized by its identi�er. Below is a listing of allidenti�ers, with explanations of the orresponding options and parameters.1. MCombineDataForUnfolding.NumFiles number of input �les



5 Options and parameters for the unfolding 102. MCombineDataForUnfolding.InputFiles[0℄ path of 1st input �le3. MCombineDataForUnfolding.InputFiles[1℄ path of 2nd input �le, et.4. MCombineDataForUnfolding.OutputFile path of output �le5. MCombineDataForUnfolding.OutputLevel output level6. MCombineDataForUnfolding.NSpetrumIterations number of spetrum iterationsto be done7. MCombineDataForUnfolding.ThetaBin if = 0 the data of all � bins will be om-bined if > 0 the number of the � bin for whih the data should be ombined
8. MCallUnfold.InputFile The full path of the �le ontaining the input histograms.9. MCallUnfold.IsData This ag is 1 for experimnental data and 0 for MC data.10. MCallUnfold.OutputLevel Possible values of the ouput level are� -1 suppress most of the output� 0 get errors and warnings� 1 normal output� 2 more output (dumps of arrays)� 3 maximum output (details of the MINUIT �t)11. MCallUnfold.ThetaBin The input �le usually ontains the histograms for several binsof the zenith angle Theta. Thetabin indiates the number of the Theta bin to be treated in theunfolding.12. MCallUnfold.FlagSmoothing Sometimes it an be useful to smooth the migrationmatrix in order to remove statistial utuations. The smoothing is ativated by settingFlagSmoothing equal to 1. Several algorithms have been implemented to perform the smoothinglike a smoothing with a �t (default one), box average, and gaussian (or at) smearing.13. MCallUnfold.FlagPrior The unfolding algorithms with regularization or iteration needsome initial guess of the unfolded distribution to begin with. This somehow \a priori knowl-edge" an be set as a onstant funtion (FlagPrior = 1), as a power law (FlagPrior = 2), asa user-spei�ed distribution (FlagPrior = 3) or as the rebinned original measured distribution(FlagPrior = 4).14. MCallUnfold.Gamma When the prior distribution is hosen to be a power law (Flag-Prior = 2), the user has to speify the value of the power (Gamma).15. MCallUnfold.nminAnmaxA Bins with missing or bad measurements an be removedby seleting ranges in the estimated quantity Eest, in terms of the �rst (nminA) and last (nmaxA)Eest bin, to be onsidered in the unfolding.



5 Options and parameters for the unfolding 1116. MCallUnfold.nminBnmaxB Also for the true quantity Etrue a range of bins an beseleted (nminB, nmaxB). This is useful and neessary if some bins are expeted to have noor only little inuene on the unfolding, implying that the unfolded distribution annot bedetermined in these bins. This is for example the ase if the orresponding olumns of themigration matrix ontribute only very little to the seleted bins of the estimated quantity, or ifthe aeptane (e�etive olletion area) in these bins is extremely low. Keeping these bins inthe unfolding an be the reason for non-onvergene of the minimization.17. MCallUnfold.RangeAutoSeletA Should be set to 1 if the Eest range, to be used inthe unfolding, should be seleted automatially.18. MCallUnfold.RangeAutoSeletB Should be set to 1 if the Etrue range, to be used inthe unfolding, should be seleted automatially.19. MCallUnfold.MinA The automati seletion of bins in Etrue is made suh that allbins beyond the range have an aeptane < MinA.20. MCallUnfold.FlagUnfold This ag selets the unfolding method to be used. Currently,the unfolding program o�ers 6 di�erent algorithms (see [1℄).� FlagUnfold = 1 The method of Redued Cross Entropy by M. Shmelling [3℄. Theregularization term is the redued ross entropy and the �2 is minimized using the Gauss-Newton method.� FlagUnfold = 2 Tikhonov's method [4℄. The regularization term is a sum of \seondderivatives" of the unfolded distribution. The �2 is minimized using MINUIT.� FlagUnfold = 3 Bertero's method [5℄ onsists in alulating a solution iterativelyand stopping the iteration at some point. In the limit of in�nite iterations the solutiontends to the speial solution S0 ([1℄).� FlagUnfold = 4 The Forward Unfolding. A ertain parametrization is assumed forthe true energy distribution and the free parameters are determined using MINUIT.� FlagUnfold = 5 Shmelling's method where the �2 is minimized using MINUIT.� FlagUnfold = 6 A modi�ed Bertero method in whih the solution tends to the LSQsolution ([1℄).21. MCallUnfold.FlagStart When Bertero's algorithm is seleted (FlagUnfold = 3 or 6)two hoies for the initial solution are foreseen: a vanishing distribution (FlagStart = 1); themeasured distribution Y (FlagStart = 2).22. MCallUnfold.FlagCriterion In the literature various riteria are proposed for hoosingthe \best" weight, or, in the ase of an iterative method, the \optimal" number of iterations.None of these riteria is equally good for all methods, as the optimal weight depends on theshape of the solution and/or also on the prior distribution. The di�erent riteria are� Choose that weight at whih the noise omponent (Trae(T)) of the solution hanges mostwhen hanging the weight (FlagCriterion = 1).� Choose the Least Squares Solution (LSQ), whih is equivalent to taking the highest weight(FlagCriterion = 2).



5 Options and parameters for the unfolding 12� Choose that weight for whih �20 is lose to the number of signi�ant measurements(FlagCriterion = 3).� Choose that weight for whih �20 is lose to the rank of the matrix G [1℄ (FlagCriterion =4).� Choose that weight for whih Trae(T ) = Trae(K) is losest to 1 (FlagCriterion = 5).� Choose that weight for whih the squared di�erene between the unfolding result and theideal distribution is minimal (only for MC, or when the true distribution is known fromsomewhere else) (FlagCriterion = 6).� (FlagCriterion = 7) Not used.� (FlagCriterion = 8) Choose the weight given by the bin number IterBin.23. MCallUnfold.IterBin If FlagCriterion is equal to 8, a spei� weight an be seletedby speifying the bin number (IterBin) of the weight out of the 45 trial weights.24. MCallUnfold.F1Type By F1Type one spei�es the type of the funtion to be �tted to theunfolded gamma ux or to be used in the Forward Unfolding :� F1Type = 1 selets a simple power law:dN=(dt dA dE) = f0 � (E=r)�, with the parameters f0, � and r. By a proper hoie ofthe parameter r the orrelation between f0 and � an be redued. Its value an be set bythe user, however, it must not be varied in the �t.� F1Type = 2 selets a power law with a uto�:dN=(dt dA dE) = f0 � (E=r)� � exp(�E=Eut), with the parameters f0, �, Eut and r.� F1Type = 3 selets a power law with a variable power index:dN=(dt dA dE) = f0 � (E=r)�, � = a+ b � log 10(E=r), with the parameters f0, a, b andr.� F1Type = 4 selets a power law with a variable power index and a uto�:dN=(dt dA dE) = f0 �(E=r)� �exp(�E=Eut), � = a+b�log 10(E=r), with the parametersf0, a, b, Eut and r.� F1Type = 5 selets a broken power law:dN=(dt dA dE) = f0 � (E=r)�1 � [1 + (E=E0)�℄(�2��1)=� , with the parameters f0, �1, �2,E0, � and r.� F1Type = 6 selets a broken power law with a variable power index �1:dN=(dt dA dE) = f0 � (E=r)�1 � [1 + (E=E0)�℄(�2��1)=� , �1 = a + b � log 10(E=r), withthe parameters f0, a, �2, E0, �, b and r.� F1Type = 7 selets a broken power law with a uto�:dN=(dt dA dE) = f0�(E=r)�1�[1+(E=E0)�℄(�2��1)=� �exp(�E=Eut), with the parametersf0, �1, �2, E0, �, Eut and r.� F1Type = 8 selets a broken power law with a variable power index �1 and a uto�:dN=(dt dA dE) = f0 � (E=r)�1 � [1 + (E=E0)�℄(�2��1)=� � exp(�E=Eut), �1 = a + b �log 10(E=r), with the parameters f0, a, �2, E0, �, Eut, b and r.25. MCallUnfold.Npar Npar is the number of values to be read for the subsequent identi-�ers.



6 Plots produed by the Unfolding program 1326. MCallUnfold.ParamVinit Starting values of the parameters for the funtion spei�edby F1Type.27. MCallUnfold.ParamStep Initial step sizes of the parameters for the funtion spei�edby F1Type.28. MCallUnfold.ParamLimlo Lower limits of the parameters for the funtion spei�edby F1Type.29. MCallUnfold.ParamLimup Upper limits of the parameters for the funtion spei�edby F1Type.30. MCallUnfold.ParamFix Has to be set to 1 for those parameters whih should be kept�xed in the �t. Otherwise it has to be set to 0. In all funtions, the parameter r has to be kept�xed in the �t.31. MCallUnfold.RelErrorMax In the orrelated �t to the unfolded gamma ux onlythose data points should be onsidered whih have a relative error < RelErrorMax.6 Plots produed by the Unfolding program6.1 Plots produed by MCombineDataForUnfoldingTwo sets of plots are produed by MCombineDataForUnfolding::PlotCombinedData(), Superimpos-eSample() and by MCombineDataForUnfolding::PlotSpetrum(), PlotSpetrumIteration() respetively.Combination Category: There is one anvas of this type for eah ux iteration step (see Figure1). The �rst plot of a anvas shows the individual distributions to be unfolded, and the sum of thesedistributions. The seond plot displays the individual migration matries and the ombined one. Inthe third plot the individual e�etive olletion areas are ompared with the ombined one. In the lastplot the e�etive observation time is plotted for the individual data sets and for the ombined one.Flux iteration Category: This anvas (see Figure 2)shows as the �rst plot a omparison of theux shapes used in the di�erent iteration steps. In the seond plot the ombined migration matriesand in the third plot the ombined e�etive olletion areas are ompared for the di�erent iterationsteps.6.2 Plots produed by MCallUnfold and MUnfoldThe method MUnfold::DrawPlots() draws all the histograms whih are of interest in the unfolding.Eah histogram belongs to one of the three ategories: input, iteration or results. Additional ate-gories, orig and orr�t, are produed by the methods MCallUnfold::DrawOrigPlots() and MCorrelat-edFit::DrawFitResults() respetively.Input Category: The data used to perform the unfolding are put into this ategory. A anvas (seeFigure 3) with the following eight plots appears at the end of the program exeution:� Distribution Y of the measurements (open irles) ompared to the distributionM �S (red bars� Prior distribution� Migration Matrix M



6.2 Plots produed by MCallUnfold and MUnfold 14� Smoothed Migration Matrix� Eigen values of the matrix G = M �MT� Eigen values of the matrix GW = MT �K�1 �M� Covariane matrix K of the measurements Y� Aeptane due to the bin seletion in the estimated quantity. For a given bin of the truequantity, the aeptane is de�ned as the fration of the migration matrix ontained in theseleted bins of the estimated quantity.Iteration Category:The solution of the unfolding proedure depends on the weight w, or in the ase of Bertero's method,on the number of iterations. Low w or a small number of iterations orrespond to strong regulariza-tion. High w or a large number of iterations orrespond to little or no regularization.In this ategory, di�erent quantities are plotted as a funtion of the weight, to see the e�et of theregularization. The full irles indiate the values of the various quantities obtained when doing theunfolding with the \best" weight.� �20 : One observes a derease of �20 as the weight inreases, whih means that the onvolutedsolution M � S gets more similar to the measured distribution Y as the degree of regularizationdereases. A solution to be aeptable must not have a too large �20.� Squared di�erene between the unfolded and the true distribution : Obviously this quantity anonly be alulated if the true solution is known, like in Monte Carlo studies. This quantity isvery useful for getting an idea about the hoie of the optimal weight w.� Trae(AR) (blak) and Trae(R) (blue) : These quantities haraterize the resolution of theresult S. The higher their value, the higher is the resolution and the lower is the bias of S. Lowvalues indiate a bad resolution of S or a strong bias.� Trae(T )=Trae(K) : The ratio of the noise omponent Trae(T) of the solution S and the noiseomponent Trae(K) of the measurements Y . A large value would indiate a solution with alarge noise omponent.� Seond derivative of S: Small values are expeted for a smooth solution, whereas stronglyutuating solutions will give large values. Usually, with inreasing strength of the regularization(orresponding to dereasing weights) the solution beomes smoother and the seond derivativedereases.� Cross Entropy : This quantity measures the deviation of the solution S from the prior distribu-tion. Small entropies mean good agreement.Results Category:Within this ategory one �nds the �nal results of the unfolding obtained with the \best" weight, asindiated by the full irles in Figure 4:



6.2 Plots produed by MCallUnfold and MUnfold 15� Unfolded distribution S before orreting for the aeptane (green points) ompared to themeasured distribution Y (open irles). Note that the measured distribution has been resaledto take the di�erent bin sizes in Eest and Etrue into aount. It should be noted that similarityof the two distributions is only expeted if the measured (estimated) quantity di�ers only littlefrom the true quantity. Similarity is by no means a ondition for a good unfolding.� Covariane matrix T of the unfolded distribution S: This matrix shows the error of the un-folded distribution and also the orrelation between di�erent bins. A good unfolding result isharaterized by small orrelations.� Contributions to �20 from the di�erent bins of the measured distribution : These are the �2values for the omparison shown in the �rst �gure of the Input Category.� Unfolded distribution S, before (green points) and after (red points) orreting for the aep-tane. If the ideal distribution is known it is also superimposed. For a good unfolding theorreted unfolded distribution (red points) should be similar to the ideal one.Original Category:This is a speial ategory ontaining histograms in the original binning, that is before any bin seletion.� Measured distribution Y of exess events. The lines indiate the bins in the estimated variableseleted for the unfolding� Migration matrix M and lines indiating the bins seleted in both, the estimated (green) andthe true variable (blue)� Unfolded distribution S of exess events : green points before and red points after orretingfor the aeptane� E�etive olletion area as a funtion of the true variable� Unfolded ux with a power-law �t� Aeptane due to the seletion of bins in the estimated quantityCorrelated �t Category:In this ategory the result of the orrelated �t are displayed :� Flux data points as a funtion of Etrue with the �t result superimposed as a solid line. If somedata points were not used in the �t (beause of too large errors) they are drawn as dashedrosses� Data points for E2 times the ux as a funtion of Etrue. The solid line represents E2 times thefuntion �tted to the ux data points.� �2 ontribution in eah bin of Etrue� Residual (signed sqrt of �2) in eah bin of Etrue



7 Judging the unfolding 167 Judging the unfolding� Seletion of ranges in Eest and Etrue A proper seletion of ranges in Eest and Etrue to beused in the unfolding is neessary for several reasons :- It makes no sense to inlude bins in Eest whih ontain a bad or no measurement. However,it is not reommended to exlude suh a bin if it is surrounded by seleted bins.- It makes no sense to inlude a bin in Etrue whose ontent annot be determined. Thisis the ase if the aeptane for this bin is very small or zero. Inluding suh a bin inthe unfolding may would unneessarily inrease the number of unknows and may ausenon-onvergene in the minimization.- If the e�etive olletion area is very small or zero in an Etrue bin, this bin should be ex-luded in the unfolding beause in this ase the ontributions from this bin to the measuredEest distribution is expeted to be negligible.� Bin sizes for Eest and Etrue The number of onstraints in the unfolding is equal to thenumber of seleted bins in Eest (fNa). For the standard methods of unfolding, the number ofunknowns is given by the number of seleted bins in Etrue (fNb). Using the onstraint thatthe total number of events is not hanged by the unfolding the number of unknowns is reduedby 1. The system is thus underonstrained if fNa < fNb-1, and overonstrained if fNa > fNb-1. The unfolding an also handle underonstrained systems. However, in this ase strongerregularization is needed whih may lead to biases. Therefore it is advisable to make the systemoveronstrained. This an be ahieved by making the bin size in Etrue suÆiently large. Thebin size in Eest is usually de�ned by the requirement that the number of exess events in thisbin an be determined suÆiently well. For an overonstrained system only little regularizationis needed, making the unfolding result more stable and reliable.For the Forward unfolding the number of unknowns is equal to the number of free parame-ters (fNpar) of the funtion assumed to desribe the gamma ux. Forward Unfolding is onlyreasonable if the system is overonstrained, i.e. fNa > fNpar.� Unfolding method In priniple any unfolding method should give an aeptable unfoldingresult. However, due to tehnial problems like non-onvergene of the minimization somemethods may fail. In this ase the result from another method may be aepted. Anotherreason for a failure of the unfolding may be inonsistenies in the measurements like biases inthe measurements whih are not (or badly) desribed by the migration matrix. In this ase areliable unfolding result annot be expeted.� Optimum hoie of the weight On the basis of ertain riteria, the program determines the\best" weight (or \best" iteration number) automatially. The plots of the Iteration ategoryan help to deide whether the seleted weigth, and thus the seleted solution, is the properone. The main riteria are : the �20 must not be too high and the noise omponent of theunfolded distribution (Trae(T )) must not be muh higher than the noise omponent of themeasurements (Trae(K)). A situation Trae(T ) >> Trae(K) either points to inonsisteniesin the measurements or may indiate that the migration matrix does not desribe the energymigration properly. Note that the user an hoose his own preferred weight using the optionMCallUnfold.FlagCriterion: 8 and MCallUnfold.IterBin.



Referenes 17� Criteria for an aeptable unfolding result A good hek of the quality of an unfoldingresult is a omparison of the results from di�erent methods. Agreement of the di�erent re-sults within the errors is a neessary ondition for a result to be aeptable. Note that exatagreement between the di�erent results is not expeted beause the regularization onditionsare di�erent for the di�erent methods.Very useful is also a omparison with the result from the Forward Unfolding, provided theForward Unfolding was suessful. If the result from one of the standard methods (whih makeno assumption about the shape of the unfolded distribution) is ompatible with the result fromthe Forward Unfolding (whih makes an expliit asumption about the shape of the unfoldeddistribution), this an be regarded as a kind of on�rmation of the Forward Unfolding result.Referenes[1℄ W. Wittek, Unfolding, MAGIC-TDAS 05-05 (2005).[2℄ V. Blobel, Unfolding methods in high-energy physis experiments, DESY 84-118(1984).[3℄ M. Shmelling, NIM A 340 (1994) 400.[4℄ A.N. Tikhonov and V.Ja. Arsenin, Methods of Solution of Ill-posed Problem - M(Nauka, 1979).[5℄ M. Bertero, INFN/TC-88/2 (1988).
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Figure 1: Combination ategory plots
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Figure 2: Flux iteration plots
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Figure 3: Input ategory plots
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Figure 5: Result ategory plots
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Figure 7: Correlated �t plots


