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Abstract

In the Standard Analysis Chain of MAGIC the last step, after the flux step, is the
unfolding step. In the unfolding step the distribution of excess events (gammas) in the
estimated energy, as determined in the flux step, is converted into a distribution of excess
events in the true energy, from which absolute corrected gamma fluxes are computed. In
addition, the unfolding step includes an iteration over an idealized flux shape, in order
to make sure that the flux shape used to calculate average collection areas and migration
matrices is in good agreement with the gamma flux obtained after the unfolding.

This note is divided into two parts. The present one is about the general unfolding
program implemented in MARS, which includes the unfolding algorithms explained in [1].
It describes the classes, options and output plots and explains how the program is to be
used. A second note deals with the performance of the unfolding program, which was
studied by means of simulated data and of real data.
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1 Introduction

1 INTRODUCTION

Measurements of a physical quantity are often systematically distorted due to the fact that the de-
tectors are not ideal. These distortions are due to limited acceptance, to biases in the measurements
and especially to the finite resolution of the detectors. Limited acceptance is referred to the fact
that the probability of observing an event is less than one, which will depend on the trigger and the
cuts applied. The second effect, the biases in the measurements, transforms the measurements, which
means that we are not measuring exactly the quantity we want. And finally, the finite resolution of
the apparatus produces a smearing in the measurement. The effect of limited acceptance, which is
usually known as a function of the true quantity, can be treated separately, and the actual unfolding
deals only with the biases and the finite resolution. The limited acceptance is taken into account when
converting the unfolded distribution of excess events (gammas) into absolute gamma fluxes.

The distortions due to biases and finite resolution can be written in the form

Y(y) Z/M(y,m)S(m)dm or  Y;=Y MjS; or Y=M-§ (1)
J

where M describes the detector response (determined from Monte Carlo), Y is the expected measured
and S the true distribution, the one without distortions.

A standard task of experiments with Cherenkov telescopes is to determine the energy spectrum of
gammas. This is done by measuring the number of gammas in bins of the measured (estimated)
energy. The aim is to derive the number of gammas in bins of the true energy, which one would obtain
with an ideal detector.

There are various approaches to solve this problem. One approach consists in a deconvolution of the
different effects affecting the measurements. This is done by essentially inverting a matrix representing
the detector response. This procedure, called Deconvolution or Unfolding, often leads to unsat-
isfactory results: The matrix inversion gives a solution which is in a sense technically correct, but
which often is totally useless due to the large correlations between adjacent bins, which imply large
fluctuations of their contents. This fact is the basis of the unfolding methods with regularization.
In these methods one considers two terms: one term, x3, expressing the degree of agreement between
the prediction M - S and the measurement Y, and another term , Reg, which is a function of S ex-
pressing the smoothness of the distribution. The different unfolding methods differ by the choice of
the regularization term Reg. A solution for S is obtained by minimizing the expression

X' = %-xﬁ + Reg (2)
for a fixed weight w, also called regularization parameter. Very large values of w, corresponding
to an unfolding without regularization, often produce noisy unfolded distributions that fit the data
perfectly. Moderate values of w will result in smoother distributions, although they will show small
deviations from the measurements, and very small w will overemphasize the regularization, leading to
larger deviations from the measurements. So, the proper choice of the weight is very important. Some
criteria for choosing the “best” weight will be discussed later in this note.

Another approach consists in determining the parameters of an assumed parametrization of the true
distribution and to check how well this parametrization is consistent with the experimental distribu-
tion. This is called Forward Unfolding. The basic difference between this and the previous methods
is that in the Forward Unfolding an explicit hypothesis is made on the true distribution, involving
only a few free parameters. Moreover, no explicit regularization is done in the Forward Unfolding.
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2 THE UNFOLDING PROGRAM

At present an unfolding can be performed by running the macro CombUnfold.C. In the macro
objects of the classes MCombineDataForUnfolding and M CallUnfold are created and member functions
of them are called. The macro also contains the iteration loop for the flux spectrum. The macro is
being converted into an executable.

2.1 The class MCombineDataForUnfolding

With the class MCombineDataForUnfolding the input data, produced in the fluz step of the Stan-
dard Analysis, are read in. The input data consist of the distribution Y to be unfolded, the migration
matrix M, the effective collection area A and the effective observation time T. For the actual unfold-
ing only Y and M are needed. However, also A and T are provided in order to convert the unfolded
distribution into an absolute flux spectrum. A and T are also necessary for the Forward unfolding.

For a given source there may be more than 1 set of input data, corresponding to different conditions
of data taking (ON/OFF, wobble, low/high zenith angles, moon/no moon data, ...). These data will
be combined before they are further processed by the classes MCallUnfold anf MUnfold. The formulas
used when combining the different data sets can be found in [1].

The classs is prepared to be called in an iteration loop, in which the flux shape is iterated, which is
used to recalculate the effective collection area and the migration matrix.

The member function ReadEnv() reads the steering file combunfold.re, in which all options and param-
eters are set (see Section 5).

CombineData() steers the combination of different data samples. It calls GetInputData(), CombineAt-
FizedTheta(), Combine ThetaBins() and WriteCombinedData().

GetInputData() reads the data from the input files, specified in the combunfold.rc file, and recalculates
the effective collection area (RecalcAeff()) and the migration matrix (RecalcMigMatriz()) using the
current flux shape (fSpectrum).

CombineAtFizedTheta() combines the data of a selected © bin, as defined in the combunfold.re file.
CombineThetaBins() combines the data of all © bins.

WriteCombinedData() writes the combined data onto a file, whose name is defined in the combunfold.rc
file. This file can be read by MCallUnfold.

MCombineDataForUnfolding also produces 2 sets of plots. On set shows the input data and the
combined data, for each iteration step separately. Another set displays the flux shapes used in the
different iteration steps and compares the combined data of the different iteration steps (see Section

6).
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2.2 The classes MCallUnfold and MUnfold

For applying the unfolding two C** classes MCallUnfold.[h,cc] and MUnfold.[h,cc] are needed.
In MCallUnfold the unfolding is prepared whereas the actual unfolding is done in M Unfold.

Detailed explanations of all the formulas implemented in MUnfold are given in [1]. The structure of
MUnfold is very flexible and allows the user to add his own code, both new options and new unfolding
algorithms. In the constructor the input data is transformed to the format of root matrices (TMatrix),
in which the unfolding program internally works. The different unfolding parameters and options are
set in the steering file combunfold.rc. The options and parameters are explained in Section 5.

For each of the unfolding methods, except the Forward Unfolding, the unfolding is performed for 45
different values of the regularization parameter (weight or iteration number). The calculations include
the storage of the values of all quantities needed for judging the result for a given weight or iteration
step. After the loop over the 45 weights, the function SelectBestWeight() is called which selects the
“best” weight according to some criteria (see FlagCriterion in Section 5). A final unfolding is done
using the selected weight to produce the final unfolded distribution.

As the Forward Unfolding doesn’t involve a weight it is performed only once. The method yields the
parameters of the assumed parametrization of the true energy spectrum. Using these parameters a
kind of “unfolded” distribution is calculated, which is then transformed into an absolute flux spectrum,
like it is done for the other unfolding methods. Fitting this flux by the same function as used in the
Forward unfolding should yield a x? of 0.0, demonstrating the consistency of the calculations in the
Forward unfolding and in the flux calculation.

Almost all the information involved in the unfolding, such as the input data, the quantities used
to judge the quality of the unfolding, the unfolded distribution and the resulting flux spectrum are
dumped into histograms in a method in charge of drawing such plots, which results in the output of
the unfolding package.

The program is very fast, making life easy when playing with the large number of options to study
the performance of the unfolding. The output plots provide all the information necessary to judge
whether the result is meaningful, as will be discussed later in this section.

2.3 Calling the Unfolding program
The call to the unfolding program is performed with the class M CallUnfold :
MCallUnfold *callunfold = new MCallUnfold();

callunfold — Initialize Unfold();
callunfold — SteerUnfold();

The member function Initialize Unfold() calls ReadEnv(), Preparelnput(), ProposeRanges() and Check-
Input().

ReadEnv() reads the steering file combunfold.re, in which all options and parameters are set.

Preparelnput() reads the input file, whose name is given in the combunfold.rc file, and stores various
histograms, which contain the distribution to be unfolded, the migration matrix, the effective collec-
tion areas and the effective observation time.



2.4 Steering the unfolding

On the basis of these histograms, ProposeRanges() determines the ranges in the estimated (Eest) and
true quantity (Etrue), which may be used in the unfolding. The final choice of the ranges depends
on the flags RangeAutoSelectA, RangeAutoSelectB, nminA, nmazA, nminB and nmazB, set in the
combunfold.rc file.

CheckInput() checks the validity and consistency of the options and parameters set in the combun-
fold.rc file.

2.4 Steering the unfolding

The actual unfolding is performed by the method SteerUnfold() which calls the methods of the un-
folding package MUnfold.[h,cc], arranged according to the tasks they perform in the unfolding. The
most important methods are :

e MUnfold() : The distribution to be unfolded, its covariance matrix and the migration matrix
are passed to MUnfold as arguments of the constructor.

e Setter functions : Options and parameters for the unfolding, which were read from the combun-
fold.rc file, are transmitted to MUnfold by various Setter functions.

e SetAcceptance() : This function transfers to MUnfold the acceptance, defined as the fraction of
the migration matrix contained in the selected range of the estimated quantity. There is one
acceptance value for each bin of the true quantity.

e SmoothMigrationMatriz() : If FlagSmoothing is set to 1 in the combunfold.rc file this member
function is called to smooth the migration matrix. Attention : the function is not yet in its final
form and should not be used.

e Definition of the prior distribution : Depending on the value of FlagPrior in the combunfold.rc
file different functions are called to define the prior distribution.

e PreventFitting() : Changes the prior distribution to be consistent with the selected bins in the
estimated quantity and with the migration matrix.

e CalculateG() : Calculates Gram’s matrix G = M- M7 its eigen values and vectors, to be used
in the iterative unfolding methods.

o CalculateGW() : Calculates the matrix GW = M7 . K~'. M, its eigen values and vectors, to
be used in the iterative unfolding methods. K is the covariance matrix of the distribution to be
unfolded.

e Do the unfolding : Depending on the value of FlagUnfold in the combunfold.rc file the corre-
sponding unfolding method is called. After this step the unfolded distribution is stored in fVb,
with the covariance matrix fVbcov.

e CorrectAcceptance() : Corrects the unfolded distribution for the losses due to the selection
of bins in the estimated quantity. The resulting corrected unfolded distribution is stored in
fVbCorr, with the covariance matrix fVbCorrcov.
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e DrawPlots() : Produces the 3 sets of plots : input, iter, results. See Section 6 for further details.

Further operations in SteerUnfold() are :

e A call to MCallUnfold:: CalculateFluzes(), which converts the unfolded distribution into absolute
gamma fluxes.

e A call to MCallUnfold::DrawOrigPlots(), which produces a set of plots (orig) in the original
binnings, before the selection of ranges. See Section 6 for further details. The gamma flux is
fitted by a function, ignoring the correlations between the bins.

e A call to MCallUnfold::JudgeUnfolding(). It checks the conditions and results of the unfolding,
giving some recommendations or warnings.

e Calls to the class M CorrelatedF'it. MCorrelatedF'it performs a fit to the gamma flux (®(F)),taking
into account all correlations. The class also produces plots of ®(E) and of E?-®(E) (see Section

6).

2.5 The classes MCorrelatedFit and MCalcXvalues

The class M CorrelatedFit is independent of the classes MCallUnfold and MUnfold and can thus be
used also outside of these classes. It performs a fit of a function to data points, taking all correlations
between the data points into account. For calculating the x positions at which the data points are to
be plotted the class MCalcXvalues is called.

The input to MCorrelatedF'it is defined via the functions :

e DefineInput() The data points Y, the covariance matrix K of Y, the overall relative uncer-
tainty r of Y, the lower bin edges and other quantities are passed to the class in the argument
list.

e SetFunction() Details about the function to be fitted to the data points are given as arguments
of SetFunction().

The actual fit is performed by the call FitFunction(). The results of the fit are drawn by DrawFitRe-
sults(), and printed by PrintFitResults().

The results of the fit consists of :

e the fitted values of the parameters of the function,
e the covariance matrix of the fitted parameters.

e a plot displaying the data points and their errors, the y2, the number of degrees of freedom and
the y2-probabilty of the fit and a graph of the fitted function,

e the x? contributions for each data point.

Often data points are given in certain bins of a variable, and the data points have the meaning of the
average of some quantity in this bin. In the case of MAGIC the data points are gamma fluxes in bins
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of the true energy (F), and the gamma fluxes ®; are to be understood as the average gamma fluxes
in the bins ¢ :

1 ElowEdge;41
P, = : ®(F)dE 3
! ElowFEdge;11 — ElowEdge; /ElmuEdge,; (E) 3)

When drawing the gamma fluxes the question arises at which F; they should be plotted. If the gamma
fluxes are described by a function f(F) a possible choice of E; is that energy at which f(E;) agrees
with the average of f(FE) in bin i :

f(E;) =

1 ElowFEdge; 41
[ 1(B) dB (4)

ElowFEdge;+1 — FlowFEdge; ' ElowEdge;

The class MCalcXvalues calculates for a given function f(F) and for a given binning Elow Fdge;
the values F;. MCalcXvalues also computes the corresponding E; for the function g(E) = E?- f(E)

. 1 ElowEdge;+1
E;) = . E)dE 5
9(E:) ElowFEdge;+1 — ElowEdge; /ElmuEdge,; 9(F) (5)

The ratio of the averages of f(E) and g(FE) in each bin of E is given by factorE2; = g¢(E;)/f(E;).
This factor is used to calcultate from the flux measurements ®; the corresponding data points for
E2 . ‘1)7 .

E*. ®; = factorE2; - ®; (6)

3 THE FORMAT OF THE INPUT FILES FOR THE UNFOLDING PROGRAM

In the following a list is given of the objects contained in each of the input files for the unfolding
program. Also the member functions of the respective classes, used in the unfolding program, are
listed.

The input files are read by the member functions GetDimensions(), GetInputData() and BookCom-
binedHistograms() of the class MCombineDataForUnfolding.

e The energy spectrum
The energy spectrum used in the flux macro when averaging the effective collection area and
the migration matrix :
TF1 *fSpectrum; name = ”Spectrum”

e The effective collection area
MHMcCollecxtionArea *collareaclass; name = " MHMcCollectionAreaEtrue”
Member functions :

- Calc(); to recalculate Aeff in coarse bins using the current energy spectrum.
- GetHistCoarse(); to get Aeff in coarse bins of Etrue and Theta.
- Get Hist(); to get Aeff in fine bins of Etrue and Theta.
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e The migration matrix
MHMcEnergyMigration *migclass; name = "MHMcEnergyMigration”

Member functions :

SetHistCol(); to set Aeff to be used in Calc()

SetSpectrum(); to set the energy spectrum to be used in Calc().

Calc(); to recalculate the migration matrix in coarse bins using the current energy spectrum
and the current Aeff.

GetHistMigCoarse(); to get the migration matrix in coarse bins.
e The effective observation time
MHEffectiveOnTime effontimeclass; name = ” MHEffectiveOnTime”
Member functions :
- GetTimelnCoarseZaBin(); to get Teff for the specified Theta bin.
e The distribution to be unfolded
MHExcessEnergyTheta *excessclass; name = ”MHExcessEnergyTheta”
Member functions :

- GetHist(); to get the distribution to be unfolded.

4 THE FORMAT OF THE FILE CONTAINING THE COMBINED INPUT DATA

The data which were combined by the class MCombineDataForUnfolding are written by the member
function WriteCombinedData() onto a file, which is then read in by the class MCallUnfold.

This file contains the objects

- TH1D *fExcessEnergy : distriburtion to be unfolded (no.of excess events vs. Eest)

- TH2D *fMigrMatrix : migration matrix (vs. Eest and Etrue)

TH1D *fColArea : effective collection area (Aeff vs. Etrue)

TH1D *fEffOnTime : effective observation time (Teff vs. sample number)

5 OPTIONS AND PARAMETERS FOR THE UNFOLDING

The options and parameters for the unfolding have to be set in the file combunfold.rc, which is read
by MCombineDataForUnfolding::ReadEnv() and by ReadEnv() in MCallUnfold::Initialize Unfold(). In
the combunfold.rc file each option or parameter is recognized by its identifier. Below is a listing of all
identifiers, with explanations of the corresponding options and parameters.

1. MCombineDataForUnfolding.NumFiles number of input files
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10.

11.

12.

13.

14.

15.

. MCombineDataForUnfolding.InputFiles[0] path of 1st input file
MCombineDataForUnfolding.InputFiles[1] path of 2nd input file, etc.
MCombineDataForUnfolding.OutputFile path of output file
MCombineDataForUnfolding.OutputLevel output level
MCombineDataForUnfolding.NSpectrumlIterations number of spectrum iterations
to be done
MCombineDataForUnfolding.ThetaBin if =0 the data of all ® bins will be com-
bined

if > 0 the number of the © bin for which the data should be combined

MCallUnfold.InputFile The full path of the file containing the input histograms.
MCallUnfold.IsData This flag is 1 for experimnental data and 0 for MC data.
MCallUnfold.OutputLevel Possible values of the ouput level are

o -1 suppress most of the output

o 0 get errors and warnings

o1 normal output

o 2 more output (dumps of arrays)

o3 maximum output (details of the MINUIT fit)
MCallUnfold.ThetaBin The input file usually contains the histograms for several bins

of the zenith angle Theta. Thetabin indicates the number of the Theta bin to be treated in the
unfolding.

MCallUnfold.FlagSmoothing Sometimes it can be useful to smooth the migration
matrix in order to remove statistical fluctuations. The smoothing is activated by setting
FlagSmoothing equal to 1. Several algorithms have been implemented to perform the smoothing
like a smoothing with a fit (default one), box average, and gaussian (or flat) smearing.

MCallUnfold.FlagPrior The unfolding algorithms with regularization or iteration need
some initial guess of the unfolded distribution to begin with. This somehow “a priori knowl-
edge” can be set as a constant function (FlagPrior = 1), as a power law (FlagPrior = 2), as
a user-specified distribution (FlagPrior = 3) or as the rebinned original measured distribution
(FlagPrior = 4).

MCallUnfold.Gamma When the prior distribution is chosen to be a power law (Flag-
Prior = 2), the user has to specify the value of the power (Gamma).

MCallUnfold.nminAnmaxA Bins with missing or bad measurements can be removed
by selecting ranges in the estimated quantity Eest, in terms of the first (nminA) and last (nmaxA)
Eest bin, to be considered in the unfolding.
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16.

17.

18.

19.

20.

21.

22.

MCallUnfold.nminBnmaxB Also for the true quantity Etrue a range of bins can be
selected (nminB, nmaxB). This is useful and necessary if some bins are expected to have no
or only little influence on the unfolding, implying that the unfolded distribution cannot be
determined in these bins. This is for example the case if the corresponding columns of the
migration matrix contribute only very little to the selected bins of the estimated quantity, or if
the acceptance (effective collection area) in these bins is extremely low. Keeping these bins in
the unfolding can be the reason for non-convergence of the minimization.

MCallUnfold.RangeAutoSelect A Should be set to 1 if the Eest range, to be used in
the unfolding, should be selected automatically.

MCallUnfold.RangeAutoSelectB Should be set to 1 if the Etrue range, to be used in
the unfolding, should be selected automatically.

MCallUnfold.MinAcc The automatic selection of bins in Etrue is made such that all
bins beyond the range have an acceptance < MinAcc.

MCallUnfold.FlagUnfold This flag selects the unfolding method to be used. Currently,
the unfolding program offers 6 different algorithms (see [1]).

e FlagUnfold = 1 The method of Reduced Cross Entropy by M. Schmelling [3]. The
regularization term is the reduced cross entropy and the x? is minimized using the Gauss-
Newton method.

e FlagUnfold = 2 Tikhonov’s method [4]. The regularization term is a sum of “second
derivatives” of the unfolded distribution. The x? is minimized using MINUIT.

e FlagUnfold = 3 Bertero’s method [5] consists in calculating a solution iteratively
and stopping the iteration at some point. In the limit of infinite iterations the solution
tends to the special solution Sy ([1]).

e FlagUnfold = 4 The Forward Unfolding. A certain parametrization is assumed for
the true energy distribution and the free parameters are determined using MINUIT.
e FlagUnfold = 5 Schmelling’s method where the x? is minimized using MINUIT.
e FlagUnfold = 6 A modified Bertero method in which the solution tends to the LSQ
solution ([1]).
MCallUnfold.FlagStart When Bertero’s algorithm is selected (FlagUnfold = 3 or 6)

two choices for the initial solution are foreseen: a vanishing distribution (FlagStart = 1); the
measured distribution Y (FlagStart = 2).

MCallUnfold.FlagCriterion In the literature various criteria are proposed for choosing
the “best” weight, or, in the case of an iterative method, the “optimal” number of iterations.
None of these criteria is equally good for all methods, as the optimal weight depends on the
shape of the solution and/or also on the prior distribution. The different criteria are

e Choose that weight at which the noise component (Trace(T)) of the solution changes most
when changing the weight (FlagCriterion = 1).

e Choose the Least Squares Solution (LSQ), which is equivalent to taking the highest weight
(FlagCriterion = 2).



5 Options

and parameters for the unfolding

12

23.

24.

Choose that weight for which x2 is close to the number of significant measurements
(FlagCriterion = 3).

Choose that weight for which x3 is close to the rank of the matrix G [1] (FlagCriterion =
4)-

Choose that weight for which T'race(T) = Trace(K) is closest to 1 (FlagCriterion = 5).

Choose that weight for which the squared difference between the unfolding result and the
ideal distribution is minimal (only for MC, or when the true distribution is known from
somewhere else) (FlagCriterion = 6).

(FlagCriterion = 7) Not used.
(FlagCriterion = 8) Choose the weight given by the bin number IterBin.

MCallUnfold.IterBin If FlagCriterion is equal to 8, a specific weight can be selected
by specifying the bin number (IterBin) of the weight out of the 45 trial weights.

MCallUnfold.F1Type By F1Type one specifies the type of the function to be fitted to the
unfolded gamma flux or to be used in the Forward Unfolding :

Fi1Type = 1 selects a simple power law:

dN,/(dt dA dE) = fo-(E/r)*, with the parameters fo, a and r. By a proper choice of
the parameter r the correlation between fy and a can be reduced. Its value can be set by
the user, however, it must not be varied in the fit.

Fi1Type = 2 selects a power law with a cutoff:
dN,/(dt dAdE) = fo-(E/r)*-exp(—FE/FE;), with the parameters fy, o, F¢, and 7.

Fi1Type = 3 selects a power law with a variable power index:
dN,/(dt dA dE) = fo-(E/r)*, a=a+b-logl0(E/r), with the parameters fo, a, b and
T

Fi1Type = 4 selects a power law with a variable power index and a cutoff:
dN,/(dt dA dE) = fo-(E/r)*exp(—E/Ecu), o = a+b-log 10(£/r), with the parameters
fUa a, ba Ecut and 7.

FiType =5 selects a broken power law:
dN,/(dt dA dE) = fo-(E/r)°"-[1 + (E/Ey)P](@?=2D/8  with the parameters fy, al, a2,
Ey, B and r.

FiType = 6 selects a broken power law with a variable power index al:
dN,/(dt dA dE) = fo- (E/r)°" - [1 + (E/Ep)P)?=eD/B a1 = a 4+ b-log 10(E/r), with
the parameters fg, a, a2, Ey, 8, b and r.

FiType =7 selects a broken power law with a cutoff:

AN, [(dt dA dB) = for (/1) [1+ (B Bo)®) 0205 exp(~ F/ Eyq), with the parameters
fo, al, a2, Eqy, B, Eqy and 7.

Fi1Type = 8 selects a broken power law with a variable power index a1 and a cutoff:
AN, /(dt dA dE) = fo- (B/r)o - [1 + (B/Ep)?|@2-0V/8 . oxp(—B/Buy), @l = a+ b
log 10(E/r), with the parameters fy, a, a2, Eq, 8, FEeu, b and 7.

25. MCallUnfold.Npar Npar is the number of values to be read for the subsequent identi-

fiers.
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26. M CallUnfold.ParamVinit Starting values of the parameters for the function specified
by F1Type.

27. MCallUnfold.ParamStep Initial step sizes of the parameters for the function specified
by F1Type.

28. M CallUnfold.ParamLimlo Lower limits of the parameters for the function specified
by F1Type.

29. MCallUnfold.ParamLimup Upper limits of the parameters for the function specified
by F1Type.

30. MCallUnfold.ParamFix Has to be set to 1 for those parameters which should be kept

fixed in the fit. Otherwise it has to be set to 0. In all functions, the parameter r has to be kept
fixed in the fit.

31. MCallUnfold.RelErrorMax In the correlated fit to the unfolded gamma flux only
those data points should be considered which have a relative error < RelErrorMax.

6 PLOTS PRODUCED BY THE UNFOLDING PROGRAM
6.1 Plots produced by MCombineDataForUnfolding

Two sets of plots are produced by MCombineDataForUnfolding::PlotCombinedData(), Superimpos-
eSample() and by MCombineDataForUnfolding::PlotSpectrum(), PlotSpectrumlteration() respectively.

Combination Category: There is one canvas of this type for each flux iteration step (see Figure
1). The first plot of a canvas shows the individual distributions to be unfolded, and the sum of these
distributions. The second plot displays the individual migration matrices and the combined one. In
the third plot the individual effective collection areas are compared with the combined one. In the last
plot the effective observation time is plotted for the individual data sets and for the combined one.

Flux iteration Category: This canvas (see Figure 2)shows as the first plot a comparison of the
flux shapes used in the different iteration steps. In the second plot the combined migration matrices
and in the third plot the combined effective collection areas are compared for the different iteration
steps.

6.2 Plots produced by MCuallUnfold and MUnfold

The method MUnfold::DrawPlots() draws all the histograms which are of interest in the unfolding.
Each histogram belongs to one of the three categories: input, iteration or results. Additional cate-
gories, orig and corrfit, are produced by the methods MCallUnfold::DrawOrigPlots() and MCorrelat-
edFit::DrawFitResults() respectively.

Input Category: The data used to perform the unfolding are put into this category. A canvas (see
Figure 3) with the following eight plots appears at the end of the program execution:

e Distribution Y of the measurements (open circles) compared to the distribution M - S (red bars
e Prior distribution

e Migration Matrix M
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e Smoothed Migration Matrix

e Eigen values of the matrix G = M - M"

e Eigen values of the matrix GW = M”T.K-1. M
e Covariance matrix K of the measurements Y

e Acceptance due to the bin selection in the estimated quantity. For a given bin of the true
quantity, the acceptance is defined as the fraction of the migration matrix contained in the
selected bins of the estimated quantity.

Iteration Category:

The solution of the unfolding procedure depends on the weight w, or in the case of Bertero’s method,
on the number of iterations. Low w or a small number of iterations correspond to strong regulariza-
tion. High w or a large number of iterations correspond to little or no regularization.

In this category, different quantities are plotted as a function of the weight, to see the effect of the
regularization. The full circles indicate the values of the various quantities obtained when doing the
unfolding with the “best” weight.

. X% : One observes a decrease of X% as the weight increases, which means that the convoluted
solution M x S gets more similar to the measured distribution Y as the degree of regularization
decreases. A solution to be acceptable must not have a too large x3.

e Squared difference between the unfolded and the true distribution : Obviously this quantity can
only be calculated if the true solution is known, like in Monte Carlo studies. This quantity is
very useful for getting an idea about the choice of the optimal weight w.

o Trace(A®) (black) and Trace(R) (blue) : These quantities characterize the resolution of the
result S. The higher their value, the higher is the resolution and the lower is the bias of S. Low
values indicate a bad resolution of S or a strong bias.

e Trace(T)/Trace(K) : The ratio of the noise component Trace(T) of the solution S and the noise
component Trace(K) of the measurements Y. A large value would indicate a solution with a
large noise component.

e Second derivative of S: Small values are expected for a smooth solution, whereas strongly
fluctuating solutions will give large values. Usually, with increasing strength of the regularization
(corresponding to decreasing weights) the solution becomes smoother and the second derivative
decreases.

e Cross Entropy : This quantity measures the deviation of the solution S from the prior distribu-
tion. Small entropies mean good agreement.

Results Category:

Within this category one finds the final results of the unfolding obtained with the “best” weight, as
indicated by the full circles in Figure 4:
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e Unfolded distribution S before correcting for the acceptance (green points) compared to the
measured distribution Y (open circles). Note that the measured distribution has been rescaled
to take the different bin sizes in Eest and Etrue into account. It should be noted that similarity
of the two distributions is only expected if the measured (estimated) quantity differs only little
from the true quantity. Similarity is by no means a condition for a good unfolding.

e Covariance matrix 7' of the unfolded distribution S: This matrix shows the error of the un-
folded distribution and also the correlation between different bins. A good unfolding result is
characterized by small correlations.

¢ Contributions to x2 from the different bins of the measured distribution : These are the x?
values for the comparison shown in the first figure of the Input Category.

e Unfolded distribution S, before (green points) and after (red points) correcting for the accep-
tance. If the ideal distribution is known it is also superimposed. For a good unfolding the
corrected unfolded distribution (red points) should be similar to the ideal one.

Original Category:

This is a special category containing histograms in the original binning, that is before any bin selection.

e Measured distribution Y of excess events. The lines indicate the bins in the estimated variable
selected for the unfolding

e Migration matrix M and lines indicating the bins selected in both, the estimated (green) and
the true variable (blue)

e Unfolded distribution S of excess events : green points before and red points after correcting
for the acceptance

e Effective collection area as a function of the true variable
e Unfolded flux with a power-law fit

e Acceptance due to the selection of bins in the estimated quantity

Correlated fit Category:
In this category the result of the correlated fit are displayed :

e Flux data points as a function of Fj.. with the fit result superimposed as a solid line. If some
data points were not used in the fit (because of too large errors) they are drawn as dashed
crosses

e Data points for E? times the flux as a function of Ej... The solid line represents E? times the
function fitted to the flux data points.

e 2 contribution in each bin of Ey.,.

¢ Residual (signed sqrt of x?) in each bin of Ejye
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7 JUDGING THE UNFOLDING

e Selection of ranges in Eest and Etrue A proper selection of ranges in Eest and Etrue to be
used in the unfolding is necessary for several reasons :

- It makes no sense to include bins in Eest which contain a bad or no measurement. However,
it is not recommended to exclude such a bin if it is surrounded by selected bins.

- It makes no sense to include a bin in Etrue whose content cannot be determined. This
is the case if the acceptance for this bin is very small or zero. Including such a bin in
the unfolding may would unnecessarily increase the number of unknows and may cause
non-convergence in the minimization.

- If the effective collection area is very small or zero in an Etrue bin, this bin should be ex-
cluded in the unfolding because in this case the contributions from this bin to the measured
Eest distribution is expected to be negligible.

e Bin sizes for Eest and Etrue The number of constraints in the unfolding is equal to the
number of selected bins in Eest (fNa). For the standard methods of unfolding, the number of
unknowns is given by the number of selected bins in Etrue (fNb). Using the constraint that
the total number of events is not changed by the unfolding the number of unknowns is reduced
by 1. The system is thus underconstrained if fNa < fNb-1, and overconstrained if fNa > fNb-
1. The unfolding can also handle underconstrained systems. However, in this case stronger
regularization is needed which may lead to biases. Therefore it is advisable to make the system
overconstrained. This can be achieved by making the bin size in Etrue sufficiently large. The
bin size in Eest is usually defined by the requirement that the number of excess events in this
bin can be determined sufficiently well. For an overconstrained system only little regularization
is needed, making the unfolding result more stable and reliable.

For the Forward unfolding the number of unknowns is equal to the number of free parame-
ters (fNpar) of the function assumed to describe the gamma flux. Forward Unfolding is only
reasonable if the system is overconstrained, i.e. fNa > fNpar.

e Unfolding method In principle any unfolding method should give an acceptable unfolding
result. However, due to technical problems like non-convergence of the minimization some
methods may fail. In this case the result from another method may be accepted. Another
reason for a failure of the unfolding may be inconsistencies in the measurements like biases in
the measurements which are not (or badly) described by the migration matrix. In this case a
reliable unfolding result cannot be expected.

e Optimum choice of the weight On the basis of certain criteria, the program determines the
“best” weight (or “best” iteration number) automatically. The plots of the Iteration category
can help to decide whether the selected weigth, and thus the selected solution, is the proper
one. The main criteria are : the yZ must not be too high and the noise component of the
unfolded distribution (Trace(T)) must not be much higher than the noise component of the
measurements (Trace(K)). A situation Trace(T) >> Trace(K) either points to inconsistencies
in the measurements or may indicate that the migration matrix does not describe the energy
migration properly. Note that the user can choose his own preferred weight using the option
MCallUnfold. FlagCriterion: 8 and MCallUnfold. IterBin.
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e Criteria for an acceptable unfolding result A good check of the quality of an unfolding
result is a comparison of the results from different methods. Agreement of the different re-
sults within the errors is a necessary condition for a result to be acceptable. Note that exact
agreement between the different results is not expected because the regularization conditions
are different for the different methods.

Very useful is also a comparison with the result from the Forward Unfolding, provided the
Forward Unfolding was successful. If the result from one of the standard methods (which make
no assumption about the shape of the unfolded distribution) is compatible with the result from
the Forward Unfolding (which makes an explicit asumption about the shape of the unfolded
distribution), this can be regarded as a kind of confirmation of the Forward Unfolding result.
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[ Distribution to be unfolded ]
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l Unfolded distribution w/o correction
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