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tIn the Standard Analysis Chain of MAGIC the last step, after the 
ux step, is theunfolding step. In the unfolding step the distribution of ex
ess events (gammas) in theestimated energy, as determined in the 
ux step, is 
onverted into a distribution of ex
essevents in the true energy, from whi
h absolute 
orre
ted gamma 
uxes are 
omputed. Inaddition, the unfolding step in
ludes an iteration over an idealized 
ux shape, in orderto make sure that the 
ux shape used to 
al
ulate average 
olle
tion areas and migrationmatri
es is in good agreement with the gamma 
ux obtained after the unfolding.This note is divided into two parts. The present one is about the general unfoldingprogram implemented in MARS, whi
h in
ludes the unfolding algorithms explained in [1℄.It des
ribes the 
lasses, options and output plots and explains how the program is to beused. A se
ond note deals with the performan
e of the unfolding program, whi
h wasstudied by means of simulated data and of real data.
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1 Introdu
tion 31 Introdu
tionMeasurements of a physi
al quantity are often systemati
ally distorted due to the fa
t that the de-te
tors are not ideal. These distortions are due to limited a

eptan
e, to biases in the measurementsand espe
ially to the �nite resolution of the dete
tors. Limited a

eptan
e is referred to the fa
tthat the probability of observing an event is less than one, whi
h will depend on the trigger and the
uts applied. The se
ond e�e
t, the biases in the measurements, transforms the measurements, whi
hmeans that we are not measuring exa
tly the quantity we want. And �nally, the �nite resolution ofthe apparatus produ
es a smearing in the measurement. The e�e
t of limited a

eptan
e, whi
h isusually known as a fun
tion of the true quantity, 
an be treated separately, and the a
tual unfoldingdeals only with the biases and the �nite resolution. The limited a

eptan
e is taken into a

ount when
onverting the unfolded distribution of ex
ess events (gammas) into absolute gamma 
uxes.The distortions due to biases and �nite resolution 
an be written in the formY (y) = Z M(y; x)S(x)dx or Yi =Xj MijSj or Y =M � S (1)whereM des
ribes the dete
tor response (determined from Monte Carlo), Y is the expe
ted measuredand S the true distribution, the one without distortions.A standard task of experiments with Cherenkov teles
opes is to determine the energy spe
trum ofgammas. This is done by measuring the number of gammas in bins of the measured (estimated)energy. The aim is to derive the number of gammas in bins of the true energy, whi
h one would obtainwith an ideal dete
tor.There are various approa
hes to solve this problem. One approa
h 
onsists in a de
onvolution of thedi�erent e�e
ts a�e
ting the measurements. This is done by essentially inverting a matrix representingthe dete
tor response. This pro
edure, 
alled De
onvolution or Unfolding, often leads to unsat-isfa
tory results: The matrix inversion gives a solution whi
h is in a sense te
hni
ally 
orre
t, butwhi
h often is totally useless due to the large 
orrelations between adja
ent bins, whi
h imply large
u
tuations of their 
ontents. This fa
t is the basis of the unfolding methods with regularization.In these methods one 
onsiders two terms: one term, �20, expressing the degree of agreement betweenthe predi
tion M � S and the measurement Y , and another term , Reg, whi
h is a fun
tion of S ex-pressing the smoothness of the distribution. The di�erent unfolding methods di�er by the 
hoi
e ofthe regularization term Reg. A solution for S is obtained by minimizing the expression�2 = w2 � �20 + Reg (2)for a �xed weight w, also 
alled regularization parameter. Very large values of w, 
orrespondingto an unfolding without regularization, often produ
e noisy unfolded distributions that �t the dataperfe
tly. Moderate values of w will result in smoother distributions, although they will show smalldeviations from the measurements, and very small w will overemphasize the regularization, leading tolarger deviations from the measurements. So, the proper 
hoi
e of the weight is very important. Some
riteria for 
hoosing the \best" weight will be dis
ussed later in this note.Another approa
h 
onsists in determining the parameters of an assumed parametrization of the truedistribution and to 
he
k how well this parametrization is 
onsistent with the experimental distribu-tion. This is 
alled Forward Unfolding. The basi
 di�eren
e between this and the previous methodsis that in the Forward Unfolding an expli
it hypothesis is made on the true distribution, involvingonly a few free parameters. Moreover, no expli
it regularization is done in the Forward Unfolding.



2 The unfolding program 42 The unfolding programAt present an unfolding 
an be performed by running the ma
ro CombUnfold.C. In the ma
roobje
ts of the 
lassesMCombineDataForUnfolding andMCallUnfold are 
reated and member fun
tionsof them are 
alled. The ma
ro also 
ontains the iteration loop for the 
ux spe
trum. The ma
ro isbeing 
onverted into an exe
utable.2.1 The 
lass MCombineDataForUnfoldingWith the 
lassMCombineDataForUnfolding the input data, produ
ed in the 
ux step of the Stan-dard Analysis, are read in. The input data 
onsist of the distribution Y to be unfolded, the migrationmatrix M , the e�e
tive 
olle
tion area A and the e�e
tive observation time T . For the a
tual unfold-ing only Y and M are needed. However, also A and T are provided in order to 
onvert the unfoldeddistribution into an absolute 
ux spe
trum. A and T are also ne
essary for the Forward unfolding.For a given sour
e there may be more than 1 set of input data, 
orresponding to di�erent 
onditionsof data taking (ON/OFF, wobble, low/high zenith angles, moon/no moon data, ...). These data willbe 
ombined before they are further pro
essed by the 
lasses MCallUnfold anf MUnfold. The formulasused when 
ombining the di�erent data sets 
an be found in [1℄.The 
lasss is prepared to be 
alled in an iteration loop, in whi
h the 
ux shape is iterated, whi
h isused to re
al
ulate the e�e
tive 
olle
tion area and the migration matrix.The member fun
tionReadEnv() reads the steering �le 
ombunfold.r
, in whi
h all options and param-eters are set (see Se
tion 5).CombineData() steers the 
ombination of di�erent data samples. It 
alls GetInputData(), CombineAt-FixedTheta(), CombineThetaBins() and WriteCombinedData().GetInputData() reads the data from the input �les, spe
i�ed in the 
ombunfold.r
 �le, and re
al
ulatesthe e�e
tive 
olle
tion area (Re
al
Ae�()) and the migration matrix (Re
al
MigMatrix()) using the
urrent 
ux shape (fSpe
trum).CombineAtFixedTheta() 
ombines the data of a sele
ted � bin, as de�ned in the 
ombunfold.r
 �le.CombineThetaBins() 
ombines the data of all � bins.WriteCombinedData() writes the 
ombined data onto a �le, whose name is de�ned in the 
ombunfold.r
�le. This �le 
an be read by MCallUnfold.MCombineDataForUnfolding also produ
es 2 sets of plots. On set shows the input data and the
ombined data, for ea
h iteration step separately. Another set displays the 
ux shapes used in thedi�erent iteration steps and 
ompares the 
ombined data of the di�erent iteration steps (see Se
tion6).



2.2 The 
lasses MCallUnfold and MUnfold 52.2 The 
lasses MCallUnfold and MUnfoldFor applying the unfolding two C++ 
lasses MCallUnfold.[h,

℄ and MUnfold.[h,

℄ are needed.In MCallUnfold the unfolding is prepared whereas the a
tual unfolding is done in MUnfold.Detailed explanations of all the formulas implemented in MUnfold are given in [1℄. The stru
ture ofMUnfold is very 
exible and allows the user to add his own 
ode, both new options and new unfoldingalgorithms. In the 
onstru
tor the input data is transformed to the format of root matri
es (TMatrix),in whi
h the unfolding program internally works. The di�erent unfolding parameters and options areset in the steering �le 
ombunfold.r
. The options and parameters are explained in Se
tion 5.For ea
h of the unfolding methods, ex
ept the Forward Unfolding, the unfolding is performed for 45di�erent values of the regularization parameter (weight or iteration number). The 
al
ulations in
ludethe storage of the values of all quantities needed for judging the result for a given weight or iterationstep. After the loop over the 45 weights, the fun
tion Sele
tBestWeight() is 
alled whi
h sele
ts the\best" weight a

ording to some 
riteria (see FlagCriterion in Se
tion 5). A �nal unfolding is doneusing the sele
ted weight to produ
e the �nal unfolded distribution.As the Forward Unfolding doesn't involve a weight it is performed only on
e. The method yields theparameters of the assumed parametrization of the true energy spe
trum. Using these parameters akind of \unfolded" distribution is 
al
ulated, whi
h is then transformed into an absolute 
ux spe
trum,like it is done for the other unfolding methods. Fitting this 
ux by the same fun
tion as used in theForward unfolding should yield a �2 of 0.0, demonstrating the 
onsisten
y of the 
al
ulations in theForward unfolding and in the 
ux 
al
ulation.Almost all the information involved in the unfolding, su
h as the input data, the quantities usedto judge the quality of the unfolding, the unfolded distribution and the resulting 
ux spe
trum aredumped into histograms in a method in 
harge of drawing su
h plots, whi
h results in the output ofthe unfolding pa
kage.The program is very fast, making life easy when playing with the large number of options to studythe performan
e of the unfolding. The output plots provide all the information ne
essary to judgewhether the result is meaningful, as will be dis
ussed later in this se
tion.2.3 Calling the Unfolding programThe 
all to the unfolding program is performed with the 
lass MCallUnfold :MCallUnfold *
allunfold = new MCallUnfold();
allunfold ! InitializeUnfold();
allunfold ! SteerUnfold();The member fun
tion InitializeUnfold() 
alls ReadEnv(), PrepareInput(), ProposeRanges() and Che
k-Input().ReadEnv() reads the steering �le 
ombunfold.r
, in whi
h all options and parameters are set.PrepareInput() reads the input �le, whose name is given in the 
ombunfold.r
 �le, and stores varioushistograms, whi
h 
ontain the distribution to be unfolded, the migration matrix, the e�e
tive 
olle
-tion areas and the e�e
tive observation time.



2.4 Steering the unfolding 6On the basis of these histograms, ProposeRanges() determines the ranges in the estimated (Eest) andtrue quantity (Etrue), whi
h may be used in the unfolding. The �nal 
hoi
e of the ranges dependson the 
ags RangeAutoSele
tA, RangeAutoSele
tB, nminA, nmaxA, nminB and nmaxB, set in the
ombunfold.r
 �le.Che
kInput() 
he
ks the validity and 
onsisten
y of the options and parameters set in the 
ombun-fold.r
 �le.2.4 Steering the unfoldingThe a
tual unfolding is performed by the method SteerUnfold() whi
h 
alls the methods of the un-folding pa
kage MUnfold.[h,

℄, arranged a

ording to the tasks they perform in the unfolding. Themost important methods are :� MUnfold() : The distribution to be unfolded, its 
ovarian
e matrix and the migration matrixare passed to MUnfold as arguments of the 
onstru
tor.� Setter fun
tions : Options and parameters for the unfolding, whi
h were read from the 
ombun-fold.r
 �le, are transmitted to MUnfold by various Setter fun
tions.� SetA

eptan
e() : This fun
tion transfers to MUnfold the a

eptan
e, de�ned as the fra
tion ofthe migration matrix 
ontained in the sele
ted range of the estimated quantity. There is onea

eptan
e value for ea
h bin of the true quantity.� SmoothMigrationMatrix() : If FlagSmoothing is set to 1 in the 
ombunfold.r
 �le this memberfun
tion is 
alled to smooth the migration matrix. Attention : the fun
tion is not yet in its �nalform and should not be used.� De�nition of the prior distribution : Depending on the value of FlagPrior in the 
ombunfold.r
�le di�erent fun
tions are 
alled to de�ne the prior distribution.� PreventFitting() : Changes the prior distribution to be 
onsistent with the sele
ted bins in theestimated quantity and with the migration matrix.� Cal
ulateG() : Cal
ulates Gram's matrix G = M �MT , its eigen values and ve
tors, to be usedin the iterative unfolding methods.� Cal
ulateGW() : Cal
ulates the matrix GW = MT �K�1 �M , its eigen values and ve
tors, tobe used in the iterative unfolding methods. K is the 
ovarian
e matrix of the distribution to beunfolded.� Do the unfolding : Depending on the value of FlagUnfold in the 
ombunfold.r
 �le the 
orre-sponding unfolding method is 
alled. After this step the unfolded distribution is stored in fVb,with the 
ovarian
e matrix fVb
ov.� Corre
tA

eptan
e() : Corre
ts the unfolded distribution for the losses due to the sele
tionof bins in the estimated quantity. The resulting 
orre
ted unfolded distribution is stored infVbCorr, with the 
ovarian
e matrix fVbCorr
ov.



2.5 The 
lasses MCorrelatedFit and MCal
Xvalues 7� DrawPlots() : Produ
es the 3 sets of plots : input, iter, results. See Se
tion 6 for further details.Further operations in SteerUnfold() are :� A 
all to MCallUnfold::Cal
ulateFluxes(), whi
h 
onverts the unfolded distribution into absolutegamma 
uxes.� A 
all to MCallUnfold::DrawOrigPlots(), whi
h produ
es a set of plots (orig) in the originalbinnings, before the sele
tion of ranges. See Se
tion 6 for further details. The gamma 
ux is�tted by a fun
tion, ignoring the 
orrelations between the bins.� A 
all to MCallUnfold::JudgeUnfolding(). It 
he
ks the 
onditions and results of the unfolding,giving some re
ommendations or warnings.� Calls to the 
lassMCorrelatedFit. MCorrelatedFit performs a �t to the gamma 
ux (�(E)),takinginto a

ount all 
orrelations. The 
lass also produ
es plots of �(E) and of E2 ��(E) (see Se
tion6).2.5 The 
lasses MCorrelatedFit and MCal
XvaluesThe 
lass MCorrelatedFit is independent of the 
lasses MCallUnfold and MUnfold and 
an thus beused also outside of these 
lasses. It performs a �t of a fun
tion to data points, taking all 
orrelationsbetween the data points into a

ount. For 
al
ulating the x positions at whi
h the data points are tobe plotted the 
lass MCal
Xvalues is 
alled.The input to MCorrelatedFit is de�ned via the fun
tions :� De�neInput() The data points Y , the 
ovarian
e matrix K of Y , the overall relative un
er-tainty r of Y , the lower bin edges and other quantities are passed to the 
lass in the argumentlist.� SetFun
tion() Details about the fun
tion to be �tted to the data points are given as argumentsof SetFun
tion().The a
tual �t is performed by the 
all FitFun
tion(). The results of the �t are drawn by DrawFitRe-sults(), and printed by PrintFitResults().The results of the �t 
onsists of :� the �tted values of the parameters of the fun
tion,� the 
ovarian
e matrix of the �tted parameters.� a plot displaying the data points and their errors, the �2, the number of degrees of freedom andthe �2-probabilty of the �t and a graph of the �tted fun
tion,� the �2 
ontributions for ea
h data point.Often data points are given in 
ertain bins of a variable, and the data points have the meaning of theaverage of some quantity in this bin. In the 
ase of MAGIC the data points are gamma 
uxes in bins



3 The format of the input �les for the unfolding program 8of the true energy (E), and the gamma 
uxes �i are to be understood as the average gamma 
uxesin the bins i : �i = 1ElowEdgei+1 �ElowEdgei � Z ElowEdgei+1ElowEdgei �(E) dE (3)When drawing the gamma 
uxes the question arises at whi
h Ei they should be plotted. If the gamma
uxes are des
ribed by a fun
tion f(E) a possible 
hoi
e of Ei is that energy at whi
h f(Ei) agreeswith the average of f(E) in bin i :f(Ei) = 1ElowEdgei+1 �ElowEdgei � Z ElowEdgei+1ElowEdgei f(E) dE (4)The 
lass MCal
Xvalues 
al
ulates for a given fun
tion f(E) and for a given binning ElowEdgeithe values Ei. MCal
Xvalues also 
omputes the 
orresponding Ei for the fun
tion g(E) = E2 � f(E): g(Ei) = 1ElowEdgei+1 �ElowEdgei � Z ElowEdgei+1ElowEdgei g(E) dE (5)The ratio of the averages of f(E) and g(E) in ea
h bin of E is given by fa
torE2i = g(Ei)=f(Ei).This fa
tor is used to 
al
ultate from the 
ux measurements �i the 
orresponding data points forE2 � �i : E2 � �i = fa
torE2i � �i (6)3 The format of the input files for the unfolding programIn the following a list is given of the obje
ts 
ontained in ea
h of the input �les for the unfoldingprogram. Also the member fun
tions of the respe
tive 
lasses, used in the unfolding program, arelisted.The input �les are read by the member fun
tions GetDimensions(), GetInputData() and BookCom-binedHistograms() of the 
lass MCombineDataForUnfolding.� The energy spe
trumThe energy spe
trum used in the 
ux ma
ro when averaging the e�e
tive 
olle
tion area andthe migration matrix :TF1 *fSpe
trum; name = "Spe
trum"� The e�e
tive 
olle
tion areaMHM
Colle
xtionArea *
ollarea
lass; name = "MHM
Colle
tionAreaEtrue"Member fun
tions :- Cal
(); to re
al
ulate Ae� in 
oarse bins using the 
urrent energy spe
trum.- GetHistCoarse(); to get Ae� in 
oarse bins of Etrue and Theta.- Get Hist(); to get Ae� in �ne bins of Etrue and Theta.



4 The format of the �le 
ontaining the 
ombined input data 9� The migration matrixMHM
EnergyMigration *mig
lass; name = "MHM
EnergyMigration"Member fun
tions :- SetHistCol(); to set Ae� to be used in Cal
()- SetSpe
trum(); to set the energy spe
trum to be used in Cal
().- Cal
(); to re
al
ulate the migration matrix in 
oarse bins using the 
urrent energy spe
trumand the 
urrent Ae�.- GetHistMigCoarse(); to get the migration matrix in 
oarse bins.� The e�e
tive observation timeMHE�e
tiveOnTime e�ontime
lass; name = "MHE�e
tiveOnTime"Member fun
tions :- GetTimeInCoarseZaBin(); to get Te� for the spe
i�ed Theta bin.� The distribution to be unfoldedMHEx
essEnergyTheta *ex
ess
lass; name = "MHEx
essEnergyTheta"Member fun
tions :- GetHist(); to get the distribution to be unfolded.4 The format of the file 
ontaining the 
ombined input dataThe data whi
h were 
ombined by the 
lass MCombineDataForUnfolding are written by the memberfun
tion WriteCombinedData() onto a �le, whi
h is then read in by the 
lass MCallUnfold.This �le 
ontains the obje
ts- TH1D *fEx
essEnergy : distriburtion to be unfolded (no.of ex
ess events vs. Eest)- TH2D *fMigrMatrix : migration matrix (vs. Eest and Etrue)- TH1D *fColArea : e�e
tive 
olle
tion area (Ae� vs. Etrue)- TH1D *fE�OnTime : e�e
tive observation time (Te� vs. sample number)5 Options and parameters for the unfoldingThe options and parameters for the unfolding have to be set in the �le 
ombunfold.r
, whi
h is readby MCombineDataForUnfolding::ReadEnv() and by ReadEnv() in MCallUnfold::InitializeUnfold(). Inthe 
ombunfold.r
 �le ea
h option or parameter is re
ognized by its identi�er. Below is a listing of allidenti�ers, with explanations of the 
orresponding options and parameters.1. MCombineDataForUnfolding.NumFiles number of input �les



5 Options and parameters for the unfolding 102. MCombineDataForUnfolding.InputFiles[0℄ path of 1st input �le3. MCombineDataForUnfolding.InputFiles[1℄ path of 2nd input �le, et
.4. MCombineDataForUnfolding.OutputFile path of output �le5. MCombineDataForUnfolding.OutputLevel output level6. MCombineDataForUnfolding.NSpe
trumIterations number of spe
trum iterationsto be done7. MCombineDataForUnfolding.ThetaBin if = 0 the data of all � bins will be 
om-bined if > 0 the number of the � bin for whi
h the data should be 
ombined
8. MCallUnfold.InputFile The full path of the �le 
ontaining the input histograms.9. MCallUnfold.IsData This 
ag is 1 for experimnental data and 0 for MC data.10. MCallUnfold.OutputLevel Possible values of the ouput level are� -1 suppress most of the output� 0 get errors and warnings� 1 normal output� 2 more output (dumps of arrays)� 3 maximum output (details of the MINUIT �t)11. MCallUnfold.ThetaBin The input �le usually 
ontains the histograms for several binsof the zenith angle Theta. Thetabin indi
ates the number of the Theta bin to be treated in theunfolding.12. MCallUnfold.FlagSmoothing Sometimes it 
an be useful to smooth the migrationmatrix in order to remove statisti
al 
u
tuations. The smoothing is a
tivated by settingFlagSmoothing equal to 1. Several algorithms have been implemented to perform the smoothinglike a smoothing with a �t (default one), box average, and gaussian (or 
at) smearing.13. MCallUnfold.FlagPrior The unfolding algorithms with regularization or iteration needsome initial guess of the unfolded distribution to begin with. This somehow \a priori knowl-edge" 
an be set as a 
onstant fun
tion (FlagPrior = 1), as a power law (FlagPrior = 2), asa user-spe
i�ed distribution (FlagPrior = 3) or as the rebinned original measured distribution(FlagPrior = 4).14. MCallUnfold.Gamma When the prior distribution is 
hosen to be a power law (Flag-Prior = 2), the user has to spe
ify the value of the power (Gamma).15. MCallUnfold.nminAnmaxA Bins with missing or bad measurements 
an be removedby sele
ting ranges in the estimated quantity Eest, in terms of the �rst (nminA) and last (nmaxA)Eest bin, to be 
onsidered in the unfolding.



5 Options and parameters for the unfolding 1116. MCallUnfold.nminBnmaxB Also for the true quantity Etrue a range of bins 
an besele
ted (nminB, nmaxB). This is useful and ne
essary if some bins are expe
ted to have noor only little in
uen
e on the unfolding, implying that the unfolded distribution 
annot bedetermined in these bins. This is for example the 
ase if the 
orresponding 
olumns of themigration matrix 
ontribute only very little to the sele
ted bins of the estimated quantity, or ifthe a

eptan
e (e�e
tive 
olle
tion area) in these bins is extremely low. Keeping these bins inthe unfolding 
an be the reason for non-
onvergen
e of the minimization.17. MCallUnfold.RangeAutoSele
tA Should be set to 1 if the Eest range, to be used inthe unfolding, should be sele
ted automati
ally.18. MCallUnfold.RangeAutoSele
tB Should be set to 1 if the Etrue range, to be used inthe unfolding, should be sele
ted automati
ally.19. MCallUnfold.MinA

 The automati
 sele
tion of bins in Etrue is made su
h that allbins beyond the range have an a

eptan
e < MinA

.20. MCallUnfold.FlagUnfold This 
ag sele
ts the unfolding method to be used. Currently,the unfolding program o�ers 6 di�erent algorithms (see [1℄).� FlagUnfold = 1 The method of Redu
ed Cross Entropy by M. S
hmelling [3℄. Theregularization term is the redu
ed 
ross entropy and the �2 is minimized using the Gauss-Newton method.� FlagUnfold = 2 Tikhonov's method [4℄. The regularization term is a sum of \se
ondderivatives" of the unfolded distribution. The �2 is minimized using MINUIT.� FlagUnfold = 3 Bertero's method [5℄ 
onsists in 
al
ulating a solution iterativelyand stopping the iteration at some point. In the limit of in�nite iterations the solutiontends to the spe
ial solution S0 ([1℄).� FlagUnfold = 4 The Forward Unfolding. A 
ertain parametrization is assumed forthe true energy distribution and the free parameters are determined using MINUIT.� FlagUnfold = 5 S
hmelling's method where the �2 is minimized using MINUIT.� FlagUnfold = 6 A modi�ed Bertero method in whi
h the solution tends to the LSQsolution ([1℄).21. MCallUnfold.FlagStart When Bertero's algorithm is sele
ted (FlagUnfold = 3 or 6)two 
hoi
es for the initial solution are foreseen: a vanishing distribution (FlagStart = 1); themeasured distribution Y (FlagStart = 2).22. MCallUnfold.FlagCriterion In the literature various 
riteria are proposed for 
hoosingthe \best" weight, or, in the 
ase of an iterative method, the \optimal" number of iterations.None of these 
riteria is equally good for all methods, as the optimal weight depends on theshape of the solution and/or also on the prior distribution. The di�erent 
riteria are� Choose that weight at whi
h the noise 
omponent (Tra
e(T)) of the solution 
hanges mostwhen 
hanging the weight (FlagCriterion = 1).� Choose the Least Squares Solution (LSQ), whi
h is equivalent to taking the highest weight(FlagCriterion = 2).



5 Options and parameters for the unfolding 12� Choose that weight for whi
h �20 is 
lose to the number of signi�
ant measurements(FlagCriterion = 3).� Choose that weight for whi
h �20 is 
lose to the rank of the matrix G [1℄ (FlagCriterion =4).� Choose that weight for whi
h Tra
e(T ) = Tra
e(K) is 
losest to 1 (FlagCriterion = 5).� Choose that weight for whi
h the squared di�eren
e between the unfolding result and theideal distribution is minimal (only for MC, or when the true distribution is known fromsomewhere else) (FlagCriterion = 6).� (FlagCriterion = 7) Not used.� (FlagCriterion = 8) Choose the weight given by the bin number IterBin.23. MCallUnfold.IterBin If FlagCriterion is equal to 8, a spe
i�
 weight 
an be sele
tedby spe
ifying the bin number (IterBin) of the weight out of the 45 trial weights.24. MCallUnfold.F1Type By F1Type one spe
i�es the type of the fun
tion to be �tted to theunfolded gamma 
ux or to be used in the Forward Unfolding :� F1Type = 1 sele
ts a simple power law:dN
=(dt dA dE) = f0 � (E=r)�, with the parameters f0, � and r. By a proper 
hoi
e ofthe parameter r the 
orrelation between f0 and � 
an be redu
ed. Its value 
an be set bythe user, however, it must not be varied in the �t.� F1Type = 2 sele
ts a power law with a 
uto�:dN
=(dt dA dE) = f0 � (E=r)� � exp(�E=E
ut), with the parameters f0, �, E
ut and r.� F1Type = 3 sele
ts a power law with a variable power index:dN
=(dt dA dE) = f0 � (E=r)�, � = a+ b � log 10(E=r), with the parameters f0, a, b andr.� F1Type = 4 sele
ts a power law with a variable power index and a 
uto�:dN
=(dt dA dE) = f0 �(E=r)� �exp(�E=E
ut), � = a+b�log 10(E=r), with the parametersf0, a, b, E
ut and r.� F1Type = 5 sele
ts a broken power law:dN
=(dt dA dE) = f0 � (E=r)�1 � [1 + (E=E0)�℄(�2��1)=� , with the parameters f0, �1, �2,E0, � and r.� F1Type = 6 sele
ts a broken power law with a variable power index �1:dN
=(dt dA dE) = f0 � (E=r)�1 � [1 + (E=E0)�℄(�2��1)=� , �1 = a + b � log 10(E=r), withthe parameters f0, a, �2, E0, �, b and r.� F1Type = 7 sele
ts a broken power law with a 
uto�:dN
=(dt dA dE) = f0�(E=r)�1�[1+(E=E0)�℄(�2��1)=� �exp(�E=E
ut), with the parametersf0, �1, �2, E0, �, E
ut and r.� F1Type = 8 sele
ts a broken power law with a variable power index �1 and a 
uto�:dN
=(dt dA dE) = f0 � (E=r)�1 � [1 + (E=E0)�℄(�2��1)=� � exp(�E=E
ut), �1 = a + b �log 10(E=r), with the parameters f0, a, �2, E0, �, E
ut, b and r.25. MCallUnfold.Npar Npar is the number of values to be read for the subsequent identi-�ers.



6 Plots produ
ed by the Unfolding program 1326. MCallUnfold.ParamVinit Starting values of the parameters for the fun
tion spe
i�edby F1Type.27. MCallUnfold.ParamStep Initial step sizes of the parameters for the fun
tion spe
i�edby F1Type.28. MCallUnfold.ParamLimlo Lower limits of the parameters for the fun
tion spe
i�edby F1Type.29. MCallUnfold.ParamLimup Upper limits of the parameters for the fun
tion spe
i�edby F1Type.30. MCallUnfold.ParamFix Has to be set to 1 for those parameters whi
h should be kept�xed in the �t. Otherwise it has to be set to 0. In all fun
tions, the parameter r has to be kept�xed in the �t.31. MCallUnfold.RelErrorMax In the 
orrelated �t to the unfolded gamma 
ux onlythose data points should be 
onsidered whi
h have a relative error < RelErrorMax.6 Plots produ
ed by the Unfolding program6.1 Plots produ
ed by MCombineDataForUnfoldingTwo sets of plots are produ
ed by MCombineDataForUnfolding::PlotCombinedData(), Superimpos-eSample() and by MCombineDataForUnfolding::PlotSpe
trum(), PlotSpe
trumIteration() respe
tively.Combination Category: There is one 
anvas of this type for ea
h 
ux iteration step (see Figure1). The �rst plot of a 
anvas shows the individual distributions to be unfolded, and the sum of thesedistributions. The se
ond plot displays the individual migration matri
es and the 
ombined one. Inthe third plot the individual e�e
tive 
olle
tion areas are 
ompared with the 
ombined one. In the lastplot the e�e
tive observation time is plotted for the individual data sets and for the 
ombined one.Flux iteration Category: This 
anvas (see Figure 2)shows as the �rst plot a 
omparison of the
ux shapes used in the di�erent iteration steps. In the se
ond plot the 
ombined migration matri
esand in the third plot the 
ombined e�e
tive 
olle
tion areas are 
ompared for the di�erent iterationsteps.6.2 Plots produ
ed by MCallUnfold and MUnfoldThe method MUnfold::DrawPlots() draws all the histograms whi
h are of interest in the unfolding.Ea
h histogram belongs to one of the three 
ategories: input, iteration or results. Additional 
ate-gories, orig and 
orr�t, are produ
ed by the methods MCallUnfold::DrawOrigPlots() and MCorrelat-edFit::DrawFitResults() respe
tively.Input Category: The data used to perform the unfolding are put into this 
ategory. A 
anvas (seeFigure 3) with the following eight plots appears at the end of the program exe
ution:� Distribution Y of the measurements (open 
ir
les) 
ompared to the distributionM �S (red bars� Prior distribution� Migration Matrix M



6.2 Plots produ
ed by MCallUnfold and MUnfold 14� Smoothed Migration Matrix� Eigen values of the matrix G = M �MT� Eigen values of the matrix GW = MT �K�1 �M� Covarian
e matrix K of the measurements Y� A

eptan
e due to the bin sele
tion in the estimated quantity. For a given bin of the truequantity, the a

eptan
e is de�ned as the fra
tion of the migration matrix 
ontained in thesele
ted bins of the estimated quantity.Iteration Category:The solution of the unfolding pro
edure depends on the weight w, or in the 
ase of Bertero's method,on the number of iterations. Low w or a small number of iterations 
orrespond to strong regulariza-tion. High w or a large number of iterations 
orrespond to little or no regularization.In this 
ategory, di�erent quantities are plotted as a fun
tion of the weight, to see the e�e
t of theregularization. The full 
ir
les indi
ate the values of the various quantities obtained when doing theunfolding with the \best" weight.� �20 : One observes a de
rease of �20 as the weight in
reases, whi
h means that the 
onvolutedsolution M � S gets more similar to the measured distribution Y as the degree of regularizationde
reases. A solution to be a

eptable must not have a too large �20.� Squared di�eren
e between the unfolded and the true distribution : Obviously this quantity 
anonly be 
al
ulated if the true solution is known, like in Monte Carlo studies. This quantity isvery useful for getting an idea about the 
hoi
e of the optimal weight w.� Tra
e(AR) (bla
k) and Tra
e(R) (blue) : These quantities 
hara
terize the resolution of theresult S. The higher their value, the higher is the resolution and the lower is the bias of S. Lowvalues indi
ate a bad resolution of S or a strong bias.� Tra
e(T )=Tra
e(K) : The ratio of the noise 
omponent Tra
e(T) of the solution S and the noise
omponent Tra
e(K) of the measurements Y . A large value would indi
ate a solution with alarge noise 
omponent.� Se
ond derivative of S: Small values are expe
ted for a smooth solution, whereas strongly
u
tuating solutions will give large values. Usually, with in
reasing strength of the regularization(
orresponding to de
reasing weights) the solution be
omes smoother and the se
ond derivativede
reases.� Cross Entropy : This quantity measures the deviation of the solution S from the prior distribu-tion. Small entropies mean good agreement.Results Category:Within this 
ategory one �nds the �nal results of the unfolding obtained with the \best" weight, asindi
ated by the full 
ir
les in Figure 4:



6.2 Plots produ
ed by MCallUnfold and MUnfold 15� Unfolded distribution S before 
orre
ting for the a

eptan
e (green points) 
ompared to themeasured distribution Y (open 
ir
les). Note that the measured distribution has been res
aledto take the di�erent bin sizes in Eest and Etrue into a

ount. It should be noted that similarityof the two distributions is only expe
ted if the measured (estimated) quantity di�ers only littlefrom the true quantity. Similarity is by no means a 
ondition for a good unfolding.� Covarian
e matrix T of the unfolded distribution S: This matrix shows the error of the un-folded distribution and also the 
orrelation between di�erent bins. A good unfolding result is
hara
terized by small 
orrelations.� Contributions to �20 from the di�erent bins of the measured distribution : These are the �2values for the 
omparison shown in the �rst �gure of the Input Category.� Unfolded distribution S, before (green points) and after (red points) 
orre
ting for the a

ep-tan
e. If the ideal distribution is known it is also superimposed. For a good unfolding the
orre
ted unfolded distribution (red points) should be similar to the ideal one.Original Category:This is a spe
ial 
ategory 
ontaining histograms in the original binning, that is before any bin sele
tion.� Measured distribution Y of ex
ess events. The lines indi
ate the bins in the estimated variablesele
ted for the unfolding� Migration matrix M and lines indi
ating the bins sele
ted in both, the estimated (green) andthe true variable (blue)� Unfolded distribution S of ex
ess events : green points before and red points after 
orre
tingfor the a

eptan
e� E�e
tive 
olle
tion area as a fun
tion of the true variable� Unfolded 
ux with a power-law �t� A

eptan
e due to the sele
tion of bins in the estimated quantityCorrelated �t Category:In this 
ategory the result of the 
orrelated �t are displayed :� Flux data points as a fun
tion of Etrue with the �t result superimposed as a solid line. If somedata points were not used in the �t (be
ause of too large errors) they are drawn as dashed
rosses� Data points for E2 times the 
ux as a fun
tion of Etrue. The solid line represents E2 times thefun
tion �tted to the 
ux data points.� �2 
ontribution in ea
h bin of Etrue� Residual (signed sqrt of �2) in ea
h bin of Etrue



7 Judging the unfolding 167 Judging the unfolding� Sele
tion of ranges in Eest and Etrue A proper sele
tion of ranges in Eest and Etrue to beused in the unfolding is ne
essary for several reasons :- It makes no sense to in
lude bins in Eest whi
h 
ontain a bad or no measurement. However,it is not re
ommended to ex
lude su
h a bin if it is surrounded by sele
ted bins.- It makes no sense to in
lude a bin in Etrue whose 
ontent 
annot be determined. Thisis the 
ase if the a

eptan
e for this bin is very small or zero. In
luding su
h a bin inthe unfolding may would unne
essarily in
rease the number of unknows and may 
ausenon-
onvergen
e in the minimization.- If the e�e
tive 
olle
tion area is very small or zero in an Etrue bin, this bin should be ex-
luded in the unfolding be
ause in this 
ase the 
ontributions from this bin to the measuredEest distribution is expe
ted to be negligible.� Bin sizes for Eest and Etrue The number of 
onstraints in the unfolding is equal to thenumber of sele
ted bins in Eest (fNa). For the standard methods of unfolding, the number ofunknowns is given by the number of sele
ted bins in Etrue (fNb). Using the 
onstraint thatthe total number of events is not 
hanged by the unfolding the number of unknowns is redu
edby 1. The system is thus under
onstrained if fNa < fNb-1, and over
onstrained if fNa > fNb-1. The unfolding 
an also handle under
onstrained systems. However, in this 
ase strongerregularization is needed whi
h may lead to biases. Therefore it is advisable to make the systemover
onstrained. This 
an be a
hieved by making the bin size in Etrue suÆ
iently large. Thebin size in Eest is usually de�ned by the requirement that the number of ex
ess events in thisbin 
an be determined suÆ
iently well. For an over
onstrained system only little regularizationis needed, making the unfolding result more stable and reliable.For the Forward unfolding the number of unknowns is equal to the number of free parame-ters (fNpar) of the fun
tion assumed to des
ribe the gamma 
ux. Forward Unfolding is onlyreasonable if the system is over
onstrained, i.e. fNa > fNpar.� Unfolding method In prin
iple any unfolding method should give an a

eptable unfoldingresult. However, due to te
hni
al problems like non-
onvergen
e of the minimization somemethods may fail. In this 
ase the result from another method may be a

epted. Anotherreason for a failure of the unfolding may be in
onsisten
ies in the measurements like biases inthe measurements whi
h are not (or badly) des
ribed by the migration matrix. In this 
ase areliable unfolding result 
annot be expe
ted.� Optimum 
hoi
e of the weight On the basis of 
ertain 
riteria, the program determines the\best" weight (or \best" iteration number) automati
ally. The plots of the Iteration 
ategory
an help to de
ide whether the sele
ted weigth, and thus the sele
ted solution, is the properone. The main 
riteria are : the �20 must not be too high and the noise 
omponent of theunfolded distribution (Tra
e(T )) must not be mu
h higher than the noise 
omponent of themeasurements (Tra
e(K)). A situation Tra
e(T ) >> Tra
e(K) either points to in
onsisten
iesin the measurements or may indi
ate that the migration matrix does not des
ribe the energymigration properly. Note that the user 
an 
hoose his own preferred weight using the optionMCallUnfold.FlagCriterion: 8 and MCallUnfold.IterBin.



Referen
es 17� Criteria for an a

eptable unfolding result A good 
he
k of the quality of an unfoldingresult is a 
omparison of the results from di�erent methods. Agreement of the di�erent re-sults within the errors is a ne
essary 
ondition for a result to be a

eptable. Note that exa
tagreement between the di�erent results is not expe
ted be
ause the regularization 
onditionsare di�erent for the di�erent methods.Very useful is also a 
omparison with the result from the Forward Unfolding, provided theForward Unfolding was su

essful. If the result from one of the standard methods (whi
h makeno assumption about the shape of the unfolded distribution) is 
ompatible with the result fromthe Forward Unfolding (whi
h makes an expli
it asumption about the shape of the unfoldeddistribution), this 
an be regarded as a kind of 
on�rmation of the Forward Unfolding result.Referen
es[1℄ W. Wittek, Unfolding, MAGIC-TDAS 05-05 (2005).[2℄ V. Blobel, Unfolding methods in high-energy physi
s experiments, DESY 84-118(1984).[3℄ M. S
hmelling, NIM A 340 (1994) 400.[4℄ A.N. Tikhonov and V.Ja. Arsenin, Methods of Solution of Ill-posed Problem - M(Nauka, 1979).[5℄ M. Bertero, INFN/TC-88/2 (1988).
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ategory plots
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ategory plots
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Figure 7: Correlated �t plots


