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Abstract

By means of third-order optical theory as well as ray-tracing simula-
tions we have investigated the feasibility of wide-field imaging atmospheric
Cherenkov telescopes with a reflective prime-focus design. For a range of
desired optical resolutions, we have determined the largest available field-
of-view of single-piece spherical, single-piece parabolic, tessellated spher-
ical, tessellated parabolic and Davies–Cotton designs, always considering
a wide range of design parameters. The Davies–Cotton design exhibits a
surprising similarity to the tessellated parabolic design in its qualitative
behaviour. Also, elliptic telescope designs with better off-axis imaging
properties than Davies–Cotton are presented. We show that by using F/2
optics it is possible to build prime-focus telescopes with a full field-of-view
of 10◦ at 0.1◦ resolution.
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1 Introduction

The first strong γ-ray signal in the TeV energy range has been measured by
the Whipple collaboration from the Crab Nebula in 1989 [1]. Since then the
technique of ground-based imaging atmospheric Cherenkov telescopes (IACTs)
has substantially improved. Nowadays the ground-based IACT technique is the
most sensitive method for measuring very high energy (VHE) γ-rays from ce-
lestial objects. The CANGAROO [2], HESS [3], MAGIC [4] and VERITAS [5]
telescopes are currently the largest and the most sensitive instruments measur-
ing the sky in γ-rays from four continents. Although differing in detail, their
optics are all prime-focus systems consisting of a single, large-aperture, seg-
mented reflector and a 2-dimensional detector array in the focal plane. These
systems are delivering highly interesting scientific data, although some of them
are not yet in their final configuration. In the next 2-3 years they will be com-
pleted and put into operation at their full power. The community hopes that
these improved instruments will increase the number of established VHE γ-ray
sources by one order of magnitude.

The evaluation of the scientific outcome might eventually also reveal which
demands the next-generation instrumentation should meet. In recent years one
of the frequently discussed designs are wide-angle IACTs [6]. By using wide-
angle, highly sensitive, large telescopes of very low threshold energy setting
one can perform all-sky surveys in a short time. In order to discriminate images
induced by γ-ray showers from those of much more abundant hadrons an optical
resolution of ∼ 0.1◦ is required over the entire field-of-view (FOV). Below 100
GeV, even ≥ 2 times better resolution is needed, since the differences in the
images of γ-ray- and hadron-induced showers become smaller at lower energies.
Thus, depending on the desired resolution, the FOV of present-day IACTs is
limited to below 5◦.

In the following, we present an exhaustive analysis of the common IACT
designs with respect to their wide-field performance. For that purpose, we have
analysed geometrical spot sizes as a function of focal ratio, incidence angle and
mirror segment size by means of both analytical third-order geometrical optics
and ray-tracing simulations.

2 Methods

Rays in a parallel beam of light, incident on different reflector loci, are reflected
and, due to aberrations, hit the image (camera) plane at different points. The
root-mean-square of this spread with respect to the centroid, the center of grav-
ity of all points, is a reasonable measure of optical spot size.

Both approaches used in this paper are capable of determining the rms point
spread as a function of incidence angle: By using third-order optical theory, on
the one hand, one can readily assess a given system by evaluating analytically
derived formulae. Yet, its results are only approximative and the theory can
hardly be applied to tessellated geometries. Ray-tracing simulations, on the
other hand, can predict optical performance very accurately, but require proper
simulation of every given system and parameter set.

After an introduction to the basic geometry and the characteristic parame-
ters of solid and tessellated prime focus systems, a more detailed description of
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the employed methods will be given in the following.

2.1 Parameters and properties of prime focus systems

The basic geometry of a simple prime focus system is depicted in Figure 1.
Every ray hits the reflector in a point (x, y, z(x, y)), is reflected and is incident
on the image plane in (ξ, η, f), where f is the focal length of the system. Here,
z(x, y) is the reflector surface function. The reflector and image coordinate
systems are supposed to be aligned such that ~eξ ‖ ~ex and ~eη ‖ ~ey, but are offset
along the global z-axis by the focal distance f . Although in general, the image
surface could be curved and offset along the z-axis to correct for aberrations, we
will only consider the simpler case of a fixed and flat image surface. For IACTs,
these are realistic assumptions.

The angular object coordinates (φx, φy) determine the angles the incident
rays make with the z-axis. Single-piece reflectors have full rotational symmetry
which is only slightly disturbed by segmentation to the analyzed extent. For
this reason, an analysis with φy = 0 imposes no restriction, and we may sim-
ply distinguish the tangential image coordinate (parallel to the projection of the
incident ray into the image plane) and the sagittal image coordinate (perpendic-
ular to the projection of the incident ray into the image plane): If φx 6= 0 = φy,
then ξ is the tangential, and η the sagittal image coordinate.

Imaging mirrors commonly are surfaces of revolution defined by conic sec-
tions. They are characterized by three parameters, namely their radius of cur-
vature r, their diameter d and their conic constant δ. Their surface equation
reads

z(x, y) ≡ z(h) =
1

r
·

h2

1 +
√

1 − (1 + δ)h2/r2
(1)

with h ≡
√

x2 + y2 ≤ d/2. Parabolic and spherical shapes are obtained by
setting δ = −1 and δ = 0, respectively.

In the simplest case, the reflector of a telescope consists of one single large
mirror with its surface defined by (1). Though, due to the large apertures and
cost reasons, the reflectors of existing IACTs are segmented into considerably
smaller mirrors, which are mounted on a common reflector dish. The individual
mirror segments are conic sections of revolution. For ease of fabrication and
testing, they are mostly chosen to be spherical.

We assume the individual mirrors of such a tessellated reflector are square-
shaped, and mounted on a square grid in (x, y) such that the four inmost mirrors
touch (0, 0) with one edge. The z-coordinate of the mirror centers is defined by
the gross reflector shape, which itself is a conic section of revolution. The size
of the segments is expressed in terms of the tessellation ratio

α =
size of individual mirror

diameter of reflector
. (2)

Tessellation may introduce further aberrations, since the actual shape of the
reflector deviates from the (putatively) ideal shape of a single reflector. Align-
ment accuracy may also influence the optical quality strongly. Interestingly,
tessellation also introduces new degrees of freedom to the optical design: The
normal to the gross shape at a single mirror’s position does not necessarily
determine its orientation.
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Figure 1: Optical layout of a prime focus system. Coming from the left, the
rays hit the mirror in coordinates (x, y, z(x, y)), are reflected and intercept the
focal plane in (ξ, η, f). Some examples of on-axis (green) and off-axis (red) rays
are indicated.
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2.2 Third-order analysis

Third-order optical theory has been developed for optical engineering tasks be-
fore the advent of fast computers. It is capable of readily anticipating optical
performance of a given system and its dependence on design parameters once
an appropriate formula has been derived from its basic rules. Although in prin-
ciple it could also be applied to tessellated systems, its elegant simplicity would
be lost due to the need of summation over a large number of single mirrors.
For that reason, its application will be limited to single mirror systems in this
report. Only in the limit of small tessellation ratios, third-order results apply
to tessellated systems as well.

When a ray with angular object coordinates (φx, φy) hits a single-piece reflec-
tor in (x, y, z(x, y)), then from third-order aberration theory [7], an approximate
expression for the image coordinates can be derived to be

ξ = −
h2(x(1 + δ) + 2fφx) + 4f(2f2φx + (x + 2fφx)(xφx + yφy))

8f2

η = −
h2(y(1 + δ) + 2fφy) + 4f(2f2φy + (y + 2fφy)(xφx + yφy))

8f2
.

(3)

By integrating x and y over a circular aperture with h ≤ d/2, analytic expres-
sions for the rms point spread with respect to the centroid can immediately be
given as

∆ξfps =
1

4

√

(1 + δ)2

2048

(

d

f

)6

+
(6 + 4δ)φ2

x + φ2

96

(

d

f

)4

+ φ2
xφ

2

(

d

f

)2

∆ηfps =
1

4

√

(1 + δ)2

2048

(

d

f

)6

+
(6 + 4δ)φ2

y + φ2

96

(

d

f

)4

+ φ2
yφ

2

(

d

f

)2

,

(4)

using the abbreviation φ ≡
√

φ2
x + φ2

y. These expressions still simplify consider-

ably if we set φy = 0 as discussed before, this substitution was deferred in order
to show the symmetry of the system. The index “fps” indicates that the results
are expressed in the focal plane scale, i. e. they have been divided by the focal
length of the system to yield an angular quantity. It will be omitted for the sake
of shortness in some places; generally, if the rms is given in angular units, the
focal plane scaling applies. The expressions (4) immediately give performance
estimates for all conceivable single-piece reflectors by simply plugging in the
corresponding parameters characterizing the system.

2.3 Ray tracing

Complementary to the analytic, yet approximative third-order analysis, ray
tracing simulations yield precise performance data for imaging systems, includ-
ing also the more complex tessellated reflector geometries.

Both, a commercially available optical simulation package [8] and a self-
implemented ray-tracer were used. With its intuitive graphical user interface
and its powerful analysis tools, the commercial package allows one comfortable
editing and detailed evaluation of the systems under consideration. Though,
simulations of tessellated reflectors with their large number of single optical
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elements1 are cumbersome to implement and require very long simulation run
times. For that reason, a custom ray-tracing engine was programmed. The
∼2000-lines, parallelized C-code can be run as a stand-alone simulation or used
from within the commercial program to enable the combination of tessellated
reflectors with other optical elements. Arbitrary tessellated reflector geometries
are supported and easy to set up.

3 Results

Comprehensive simulations have been made for the cases of (1.1) single-piece
spherical, (1.2) single-piece parabolic, (2.1) tessellated spherical, (2.2) tessel-
lated parabolic design with constant radii of curvature, (2.3) Davies–Cotton
and (2.4) tessellated parabolic design with adjusted radii of curvature. For ev-
ery design, systems with focal lengths f ranging from 1.0 to 2.9 in steps of 0.1
were investigated. Since the diameter of the reflector was set to 1 in all sys-
tems, focal ratios f/d equally range from 1.0 to 2.9. For tessellated systems,
the tessellation ratio was varied from 0.005 to 0.080 in steps of 0.005. Image
quality was analyzed for incidence angles between 0.0◦ and 5.8◦ in steps of 0.2◦

by means of tracing ∼ 800000 rays through the system and determining the
rms widths of the resulting images. The simulation results are presented in the
following section together with some implications from third-order theory.

3.1 Single-piece reflectors

3.1.1 Single-piece sphere

Inserting δ = 0 for a spherical reflector into (4) and setting φy = 0 one obtains

∆ξfps =
1

4

√

1

2048

(

d

f

)6

+
7φ2

x

96

(

d

f

)4

+ φ4
x

(

d

f

)2

∆ηfps =
1

4

√

1

2048

(

d

f

)6

+
φ2

x

96

(

d

f

)4
(5)

for the rms point spread in tangential and sagittal direction, respectively. Spher-

ical aberration, corresponding to the first summand in (5), strongly deteriorates
imaging quality especially for small incidence angles. In order to get ∆ξfps

and ∆ηfps below 0.05◦, the focal ratio must be larger than 1.85, as can be de-
rived from (5). This is confirmed by the simulation results, which are shown in
Figure 2. The sagittal rms hardly changes with the light incidence angle as it is
dominated by spherical aberration in the depicted parameter range. In contrast,
the tangential rms displays also a considerable angular dependence. The overall
behaviour of the system is predicted by third-order theory with quantitative
deviations smaller than 10%.

1Simulations with up to > 100000 single mirrors have been made.
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3.1.2 Single-piece parabola

Let us now insert the value δ = −1 for a single-piece parabolic reflector into (4)
and consider again the case φy = 0:

∆ξfps =
1

4

√

3φ2
x

96

(

d

f

)4

+ φ4
x

(

d

f

)2

∆ηfps =
1

4

√

φ2
x

96

(

d

f

)4
(6)

From the obtained formulae (6) one can notice that the first summands in the
square roots of (4) have vanished so that on-axis imaging is supposed to be
perfect for arbitrary focal ratios. Though, at non-zero incidence angles, the
aberrations described by the second (coma) and third (astigmatism) summands
induce a blurring of the image, which increases progressively with the incidence
angle. The simulation results, illustrated in Figure 3, confirm the predictions.

3.2 Tessellated reflectors

3.2.1 Tessellated spherical design

A single spherical reflector can be segmented into smaller mirrors. If the small
mirrors are spherical themselves and have the same radius of curvature as the
gross sphere their surfaces coincide with the gross shape. Apart from possi-
ble small gaps between the individual mirrors, the tessellated reflector surface
is then identical to the single-piece spherical reflector’s. Correspondingly, the
simulation yields also the same performance data, as illustrated in Figure 4.

3.2.2 Tessellated parabolic design with constant radii of curvature

The simplest way to segment a parabolic reflector into smaller mirrors is the
following: The individual mirrors are spherical, have all the same radius of
curvature, namely twice the focal length f of the telescope, and their normals
(in the center) coincide with the normal of the gross reflector shape at their
center. Figure 5 shows the simulation results for such a configuration for a
realistic tessellation ratio α = 0.03. Qualitatively, they are very similar to the
results for the single piece paraboloid. Only when approaching φx = 0, where
imaging of a single-piece parabola of revolution becomes perfect, the influence
of tessellation reduces image quality.

3.2.3 Davies–Cotton design

Another tessellated reflector design being applied in some of today’s IACTs
originally goes back to a solar concentrator and is termed Davies–Cotton design
[9]. In this design, the spherical mirror elements are arranged on a spheroid with
the radius being just the focal length of the telescope. The radius of curvature
of the individual mirrors is constantly 2f . The normals of the mirrors do not
coincide with the normals of the gross spheroid (radius f), instead they all
point to (x, y, z) = (0, 0, 2f). For on-axis incidence, the chief rays of the single
mirrors are imaged perfectly into the focal point like in the case of a tessellated
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(a) tangential RMS (b) sagittal RMS

Figure 2: Dependence of RMS widths of the point spread function on the inci-
dence angle φx and the focal ratio f/d for a single-piece spherical reflector. The
contour lines connect (f/d, φx)-combination which result in an equal rms spread.
The line at 0.05◦ marks the upper limit for achieving γ-hadron discrimination.

(a) tangential RMS (b) sagittal RMS

Figure 3: RMS widths for a single-piece parabolic reflector. Illustration analo-
gous to Figure 2.
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parabolic reflector [10]. The results for the Davies–Cotton design (Figure 6)
exhibit a striking similarity to the data for a parabolic reflector, although its
gross shape is spherical. For larger incidence angles, this design outperforms
the parabolic configuration.

3.2.4 Tessellated parabolic design with adjusted radii of curvature

The last presented design uses a parabolic gross shape which defines the po-
sitions and the orientation of the mirrors. Though, in contrast to the second
discussed scenario, the radii of curvature of the mirrors are adapted to their
varying distance to the focal point (x, y, z) = (0, 0, f) in order to avoid defocus
aberration of the individual mirror images.

A parabola of revolution has two principal radii in every point of its surface.
As a first approximation, one may take the average of these two as the radius
of curvature of a mirror segment. Yet, it turns out that especially for larger
distances from the telescope axis, this is not an ideal solution. Superior choices of
the radii have been found in numerical optimization runs [4], [11]. Interpolating
and scaling the optimized radii for a parabolic gross shape from ref. [4], we obtain
improved performance for small incidence angles, as the simulation data show
(Figure 7). Yet, for larger angles global comatic aberrations dominate – just as
in the case of the tessellated parabolic reflector without radius adjustment of
the single mirrors.

4 Discussion

4.1 Shower discrimination capability

The crucial criterion for an optical layout suitable for IACTs is the ability to
discriminate showers induced by hadrons from those induced by γ-rays. In order
to enable shower discrimination over a given FOV, a large enough focal ratio
has to be chosen such that both tangential and sagittal rms spot sizes are below
0.05◦.

Figure 8 shows the minimum required focal ratios for the four presented
tessellated reflector designs. The results have been obtained from the simulation
data for the tangential rms, which is larger than the sagittal rms in all considered
cases. Although third-order optical theory only treats single-piece reflectors, the
behavior of the systems can be well predicted. Solving (4) for the focal ratio,
good approximations for the results found in the simulations can be obtained.
Only the Davies–Cotton data cannot be reproduced that accurate – this is
because it is the only discussed design in which the normals (in the centers)
of the individual mirrors do not coincide with the normals of the gross shape;
a situation that cannot be captured by conventional third-order analysis. Yet,
qualitatively, the behavior resembles much that of a parabolic reflector.

The Davies–Cotton design is superior to all other presented designs: It allows
to make reflectors ∼ 0.2 faster for all analyzed fields compared to parabolic
gross shapes. Adjusting the radius of curvature of the individual mirrors in
a parabolic design is only effective when small FOV (φ < 1.5◦) are desired.
Spherical configurations yield the largest spot sizes and, consequently, only poor
shower discrimination capability.
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(a) tangential RMS (b) sagittal RMS

Figure 4: RMS widths for a tessellated spherical reflector. The tessellation ratio
α is 0.03. Illustration analogous to Figure 2.

(a) tangential RMS (b) sagittal RMS

Figure 5: RMS widths for a tessellated parabolic reflector with constant radii of
curvature. The tessellation ratio α is 0.03. Illustration analogous to Figure 2.
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(a) tangential RMS (b) sagittal RMS

Figure 6: RMS widths for a Davies–Cotton reflector. The tessellation ratio α is
0.03. Illustration analogous to Figure 2.

(a) tangential RMS (b) sagittal RMS

Figure 7: RMS widths for a tessellated parabolic reflector with adjusted radii.
The tessellation ratio α is 0.03. Illustration analogous to Figure 2.
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Figure 8: Required focal ratio to distinguish γ-ray from hadron induced show-
ers over a half FOV φ. Points: simulation data for spherical design (green),
parabolic design with constant radii (red), Davies–Cotton design (violet),
parabolic design with adjusted radii (blue). Tessellation ratio α is 0.03. Lines:
third-order approximation for single-piece parabola (red), single-piece sphere
(green).

4.2 Alternative configurations

The Davies–Cotton design has no single-piece analogue but makes explicit use
of the new degree of freedom introduced by tessellation. It is an interesting
question whether there are other tessellated prime-focus systems with even wider
FOV.

A simple approach was taken to answer this question. For fixed f and d, the
parameters r and δ of the gross reflector shape were varied. Reasonable imaging
of the whole system was warranted by orientating the individual mirrors (all of
which have a radius of curvature of 2f) so that their normals (at their centers)
point to (0, 0, 2f), like in a Davies–Cotton design [10]. Quite easily, designs
allowing even wider FOV than conventional Davies–Cotton could be found,
with some dependence on the chosen focal ratio. For f/d = 2, Figure 9 shows
the example of an elliptical gross shape (r = 0.85f , δ = 5) which has a full FOV
of 10◦.

Besides spatial resolution, high temporal resolution is important for an ef-
fective background suppression especially when measuring in the sub-100 GeV
energy regime [12]. This means that the arrival time of Cherenkov photons at the
camera should not depend on the point where they hit the reflector. Parabolic
reflectors are (apart from small effects introduced by tessellation) isochronous,
whereas in a Davies–Cotton design there is a spread in photon arrival time [13].
We have simulated the photon arrival time distribution for parabolic, Davies–
Cotton and the described elliptic design in the limit α → 0 and summarize the
main results in Table 1. The improved off-axis imaging of the elliptic design
comes at the expense of timing accuracy. Contrary to our expectations, the
differences in the photon arrival time distributions for different incidence angles
< 5◦ were negligible in all considered designs.
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r δ φmax tFWHM/f
φx = 0◦

tFWHM/f
φx = φmax

parabolic 2f −1.0 ∼ 3.6◦ 0.00 ns/ m 0.00 ns/ m
Davies–Cotton f 0.0 ∼ 4.0◦ 0.11 ns/ m 0.11 ns/ m

elliptic 0.85f +5.0 ∼ 5.0◦ 0.18 ns/ m 0.18 ns/ m

Table 1: Comparison of point spread and timing properties of some tessellated
designs with a gross shape described by the radius of curvature r and conic
constant δ. The focal ratio is f/d = 2, the tessellation ratio α = 0.03 for
all systems. φmax is the maximum available half field angle and tFWHM the
full width at half maximum of the photon-arrival time distribution, neglecting
tessellation. Since tFWHM scales linearly with the dimensions of the system for
fixed f/d, it is given normalized to the focal distance.
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-0.2f -0.1f 0.1f 0.2f
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Figure 9: Simulated tangential rms for given field angle φ for spherical design
(green), Davies–Cotton design (violet), parabolic design with adjusted radii
(blue), elliptical design (orange). The focal ratio is 2, tessellation ratio 0.03.
The inset shows the actual gross shape of the different configurations.

4.3 Tessellation ratio

The data presented so far were for the fixed tessellation ratio of α = 0.03, which
corresponds approximately to the value of the MAGIC telescope, which has a
diameter2 of 17 m and the individual mirrors are 0.5 m × 0.5 m. Other ratios
are imaginable and may also be desirable for cost reasons. As stated above, all
simulations were performed for a range of tessellation ratios. Depending on the
system configuration, the focal ratio and incidence angle, it may have influence
on image quality within the investigated range. The data for a focal ratio of 1,
and incidence angles 0◦, 1◦ and 2◦ are shown in Figure 10. The choice of these
parameters has practical reasons: Focal ratios as fast as 1 or slightly more are
common in today’s IACTs, and the incidence angles are limited to below 3◦.

The parabolic design shows the strongest dependence on the tessellation
ratio. This is due to the defocus of the individual mirrors that worsens for
larger segments. If defocus is eliminated by adjusting the radius of curvature in

2Actually, the MAGIC reflector is an octagon.
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the parabolic design, the tessellation ratio is much less critical. Only for small
incidence angles, when global aberrations vanish, it affects quality distinctly.
As expected, the values of the parabolic configurations converge in the limit
α → 0. For the spherical design, the tessellation ratio does not influence image
quality, since the resulting shape is always the same – that of a solid spheroid –
independent of segmentation. The aberrations are too large to fit in the range
depicted in Figure 10, though.

Obviously, tessellation ratio does not deteriorate imaging quality critically
as long as it is below 0.08 (and the individual radii of curvature are adjusted
in the parabolic case). Thus, for example, the mirrors of the MAGIC telescope
could have twice the size (then α ≈ 0.06) without worsening its performance.

0.02 0.04 0.06
Α

0.02

0.04

0.06

0.08

0.1

0.12

D
Ξ

@°D

Figure 10: Dependence of tangential rms on tessellation ratio α for incidence
angles 0◦ (diamonds), 1◦ (stars) and 2◦ (squares). Parabolic design with con-
stant radii (red), Davies–Cotton design (violet), parabolic design (blue) with
adjusted radii. Points are connected to guide the eye.

5 Conclusions

The main purpose of this paper was to study the potential of different prime
focus designs for wide-angle IACTs, using third-order optical aberration theory
and ray-tracing simulations. The investigations comprise practically the entire
reasonable parameter range for both single-piece and tessellated parabolic and
spherical, as well as the Davies–Cotton design. Along with that, some new
tessellated designs have been examined. The Davies–Cotton design exhibits
best off-axis performance of the conventional designs. Yet, tessellated designs
with elliptic gross shapes can yield even wider FOV but at the expense of timing
accuracy. We show that F/2 designs can provide 10◦ full FOV. For faster F/1
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optics the full FOV available at a 0.1◦ resolution is below 3◦. The simulation
results also show that for wide-angle IACTs, segmentation of the gross shape
into spherical mirrors deteriorates imaging only negligibly.

We are planning to study more complex systems that may provide even
wider fields-of-view.
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